Plan Recognition for Real-World Autonomous Robots:
Work in Progress

Marcus J. Huber and Edmund H. Durfee*
Distributed Intelligent Agents Group (DIAG)
Artificial Intelligence Laboratory
The University of Michigan
Ann Arbor, Michigan 48109-2110

marcush@engin.umich.edu, durfee@engin.umich.edu

Abstract

An agent operating in the real world must be
able to coordinate its activities with those of other
agents. Traditionally, work in multiagent coordi-
nation has assumed that agents can communicate
about their intentions or that they are coordinated
through the efforts of a third party. In many en-
vironments, however, reliance on communication
or on a coordinating agent is infeasible due to the
unpredictable nature of the environment or to neg-
ative side-effects of communication. We have de-
veloped a multiple-resolution hierarchical scheme
by which an agent can use observations to infer
the high-level goals of other agents. The research
domain to which we have applied our scheme is co-
ordinated motion and navigation among multiple
robots, both in simulation and in the real-world.
Our hierarchical scheme makes probabilistic plan
recognition possible in this domain, and it helps to
further identify and begin solving crucial issues in
plan recognition in physical domains.

Introduction

Autonomous agents' operating in the real world will
not be able to perform their tasks in isolation. At some
point in time, these robots will come into contact with
other autonomous robots, either intentionally or coin-
cidently. The robots will then not be working merely
within the confines of the already very difficult dynamic
and Murphy’s Law-driven environment, but within a
larger scheme wherein other intelligent agents must be
dealt with. Conflict over shared resources (time, space,
unique items, etc.) will eventually occur, and oppor-
tunities for synergistic cooperation might arise. If the
agent 1s expected to accomplish its goals in multiagent

*This research was sponsored in part by the NSF under
grants TRI-9015423, TRI-9010645, and TRI-9158473, and by
DARPA under contract DAAE-07-92-C-R012.

!We will use the words robots and agents synonymously
throughout the paper as the given domain is a specific in-
stance of the more general idea of multiple “intelligent” en-
tities interacting in the real world.

situations, it must coordinate its plans with the plans
of others.

To coordinate its plans with those of others, an
agent must have a model of the plans of each of
the other agents. Traditional techniques in multia-
gent planning and coordination [Cammarata et al.1983,
Durfee and Lesser1987, Georgeff1983] allow agents to
explicitly communicate about their intentions and
plans. However, some environments might not admit to
such explicit communication, either because the com-
munication medium might be unreliable (sporadic in-
terference) or using the communication medium might
introduce new risks to the agents (such as being de-
tected by unfriendly agents). For this reason, agents
might prefer to attempt to infer the plans of each other
by passively observing the actions or effects of other
agents rather than actively communicating plans.

As in any plan recognition system, the goal is
to infer the high-level plans of another agent based
upon observations of the other agent’s behaviors.
While a predominant portion of plan recognition re-
search has been in the context of such domains
as discourse analysis and story understanding (e.g.
[Charniak and Goldman1990, Lochbaum et «.1990]),
very little research has gone into applying the paradigm
to autonomous robots in real-world situations. We have
implemented a plan recognition system for multiple au-
tonomous robots in a simulator and in the real world
to get a better understanding of the important issues
that face coordination through observation among au-
tonomous robotic systems.

The simulated system operates within a MICE
[Montgomery and Durfee1990] controlled environment,
where agents move to and fro in a two dimensional
grid world. Sensors are simulated, noiseless, and pre-
cise. The implemented real-world system involves the
operation of multiple mobile robots performing tasks
in an enclosed area of the robotics laboratory at the
University of Michigan. The robot is a Cybermotion
mobile platform called CARMEL (see Figure 1) that
1s equipped with a computer vision system that it uses
to observe the other agent(s) in its vicinity. The other
agent(s) are TRC Labmate mobile platforms (see Fig-

Figure 1: The real-world plan recognition testbed

ure 1—the tube on top is the means by which CARMEL
identifies and tracks other agents). Given some observa-
tions, the observing robot tries to infer the goals of the
other robots and then respond in the “correct” manner.
Initially only one robot is being observed moving from a
start location to a goal location. In both environments,
the overwatching robot, having inferred possible final
destinations, tries to move to a location that comple-
ments the most likely final destination (this could be
the same location, an adjacent location, etc.)

The system’s inferencing is done using a be-
lief network implemented with the IDEAL system
[Srinivas and Breese1989]. Evidence in the form of vi-
sually perceived actions is input into the network and
then propagated through it. The high-level plans/goals
of the watched agent can then be hypothesized from
the results. These high-level goals are possible desti-
nation locations within the workspace. These are fi-
nite and enumerable, possibly some point of strategic
or tactical interest to the watched robot. The watched
robot’s behavior is simply to determine the movement
that will take it toward its final destination. Given that
the overwatching robot can detect the location and mo-
tions of the watched robot, it can then try to infer the
destinations that the robot is trying to reach and act
appropriately.

In the following sections we will discuss the work done
in developing the plan recognition system. We will start
by discussing the representation scheme developed and
used by the system, followed by a description of the
belief network architecture and function, and then de-
scribe the results of several experiments that were per-
formed to verify that the system worked as designed.
In the final section we discuss some of the major exten-
sions and modifications that we see for the immediate
future.

Move

Figure 2: Belief Network Architecture

Plan Recognition
Belief Net Architecture

In order to perform the necessary accumulation of
information and subsequent inferencing, we incorpo-
rated a belief network (also called a Bayesian network)
[Pearl1988] into the system. This network permits
the insertion and accumulation of sensor-based obser-
vations that get propagated throughout the network,
resulting in the ability to hypothesize goals. The over-
watching robot periodically senses the watched robot
to determine the visible primitive actions (if any) that
were performed by the observed robot. These observa-
tions are added to the history of previously observed
actions, and the beliefs of the belief network updated.
With consistent positive reinforcing evidence, belief in
a possible destination increases, while, with consistent
negative reinforcing evidence, belief in a possible desti-
nation decreases.

We show the simple belief network architecture in
Figure 2. The states held by the location node are the
region representations that describe the overall map.
The states held by the destination node are the possi-
ble locations (in terms of x,y coordinates) that the over-
watched agent might consider to be destinations. The
movement node contains the primitive actions that the
overwatching agent is looking for, namely movement in
the cardinal directions of north, south, east, and west,
as well as staying in the same position, from the last
time observed. The belief network represents the idea
that given a goal destination and the particular location
that an agent is in, the next move is predictable. This
assumes that the agent will move in a bee-line to the
destination from the given location and therefore does
not handle situations where the agent is trying to trick
the watching agent by making feinting maneuvers or is
taking a path that will take it around some obstacle
that is in the way.

For the network:

1. prior probabilities have to be determined for each of
the possible states of the independent nodes (the lo-
cation and destination nodes).

2. conditional probabilities have to be determined for
the dependent nodes (the move node).

For the location node, the state that represents the
current position of the agent is set to the probability
of 1.0 for the simulator version, since sensors are as-
sumed to be perfect. We set this probability to some
lesser value for the real world version, dependent upon
how much we trust the accuracy of our sensor system.
If the robot is computing the location relative to itself,
which may be fairly accurate, the confidence in the sen-
sor systemn may be quite high. On the other hand, if the
calculated position is fixed to some absolute coordinate
system, the errors accumulating over time in the watch-
ing robot’s own odometry continually degrades the ac-
curate positioning of the watched robot. In this case,
the confidence level will drop over time until such time
as the agent has a chance to get its bearings and repo-
sition itself. The overwatching agent initially considers
each of the destination locations as equiprobable, with
adjustments to the beliefs occurring through the prop-
agation of belief after evidence has been accumulated
through observations.

The conditional probabilities (e.g. the probability
that the observed agent, given its current location and
assuming that it 1s trying to reach destination location
1, will move toward the east) are calculated based as a
normalized discrete approximation of the relative like-
lihood of moving in a particular direction while moving
to any location within a destination region from any-
where within the watched agent’s current region.

Hierarchical Topology Representation

Our work to date has dealt with agents moving and nav-
igating through a flat world. As such, we have needed a
representation of the area in which the agents are mov-
ing, with particular distinction given to special goal lo-
cations (those deemed interesting for some reason). For
operation in very small areas, or where the granular-
ity of representation can be quite large, enumeration of
possible locations (e.g. at centimeter intervals) might
be useful. Larger areas, or the need for a finer granu-
larity of representation, require a different approach—
some form of abstraction—as the system can become
bogged down by the great number of explicitly repre-
sented states required at each node of the belief net-
work.

One early product of the research has been the de-
velopment of a representation for the environment in
which the robots will operate. Belief networks suffer
greatly from the combinatorial explosion of the num-
ber of conditional probabilities required as the number
of states in connected nodes increases. A finer resolu-
tion representation requires a larger number of current
(location) and goal (destination location) states to rep-
resent the same area. While other hierarchical schemes
already exist (e.g. oct/quad trees, K-d trees), a sim-
ple hierarchical representation scheme more suited to
the domain was developed for the initial scenarios. A
mechanism to dynamically modify the belief network
was developed in conjunction with this.

(1)(21)(221)(22;n2231)(2232)
(2233)(2234)(224)(23)(24)(3)(4)

*
.
* 1|2
3

3 4

.
quadrant
L] coding scheme

(D(2)(3)(11)(12)(13)(14)

Figure 3: Examples of representations. The filled circles
are possible destination locations, the hollow square is
the observed robot.

We opted for a simple scheme reminiscent of quad
trees. The entire area of operation is represented at
multiple resolutions, with a section being marked as
whether it is interesting (i.e. contains within its bounds
a watched agent or a possible destination) or uninter-
esting. Fach quadrant of a region (square for now) may
be further divided into four sections. The level of reso-
lution required for each portion of the entire map is kept
at a minimum; a section of the map is further divided
only if it contains within its bounds both a watched
agent and one or more possible destinations. The over-
watching agent needs the distinction between them so
that it can determine whether or not a watched agent
is sitting at a destination location. Examples of several
maps and their representations are given in Figure 3.

Dynamic Modification

The world in which robots will work will change dynam-
ically. A particular representation of the world, then,
will only work for a limited time before it becomes in-
accurate, invalid, etc. Representations of dynamic por-
tions of the world, then, will need to change dynami-
cally themselves. We have implemented the representa-
tion scheme so that it undergoes dynamic change as the
robots move about (see Figure 4). At each sensor cy-
cle (synchronized with agents’ actions in the simulator
but variable in the real implementation) the overwatch-
ing robot checks the current world model to see if the
representation is valid and minimal. Validity depends
upon the criterion of being able to distinguish between
watched robots and destinations in the representation
while a minimal representation is as described above.
If either of these criteria are not met, then modifica-
tions to the representation are made, with correspond-

ing changes to the belief network that uses the repre-
sentation.

As the representation changes to accommodate the
above criteria, the beliefs accumulated up to that time
are redistributed from the old representation to the new
representation. When abstraction of a quadrant occurs,
the belief in the parent region is the sum of the beliefs
of the child regions. Similarly, when a region of the
representation is broken into its corresponding quad-
rants, the belief assigned to the parent region is equally
divided between the child quadrants that potentially
contain destination locations.

Representational Effects on Performance

Early experiments were conducted using belief networks
in which the entire mapped area was represented at
a single, high, resolution. The resulting performance
was very poor and became intolerable once larger areas
were tried. A lower resolution of representation was an
option, but not a viable one, as only correspondingly
large motions could then be detected.

The largest single factor in the performance of the
system 1s the number of states held at each node in
the network. The number of conditional probabilities
required 1s the cross product of all of the states in
the location, destination, and move nodes. Even more
significantly, the time required to propagate evidence
throughout a belief network increases exponentially, so
that representing a large map at a single, high resolu-
tion would be impractical.

The multiple resolution scheme implemented dramat-
ically improves the performance of the system. The
number of states required to represent a region increases
only by three for every doubling of the size of the re-
gion. This compares to a fourfold increase for a single
resolution scheme. At the time that the change in the
representation took place we were running experiments
(in MICE) with agents in a 15x15 grid. The new rep-
resentation scheme was tried using a 32x32 grid, with
a resulting performance improvement of a minute-and-
a-half compared to four seconds, a 22.5 times improve-
ment. And this was a direct comparison; the constant
resolution scheme was never run on a 32x32 grid. Had
it been, two orders of magnitude of improvement would
not have been surprising.

While the multiple resolution representation scheme
results in a large increase in the performance level of
the system, there exists at least one major deficiency;
there exists a potential for a dramatic change in the
representation whenever the watched agent crosses a
quadrant boundary. The map representation remains
constant as long as no borders in the current represen-
tation are crossed by the overwatched agent. But, as
described above, the system dynamically changes the
representation throughout a run. The significance of
the representation change depends upon how close to
a possible destination the overwatched agent is after it
crosses a boundary, compared to how close to a desti-

‘D [] _:% []
(D(21)(22)(23)(24)(3)(4) (11)(12)(1)(141 142)
(143)(1441)(1442)(1443)

(1444)(2)(3)(4)

(a) (b)
Figure 4: Representation change upon border crossing.
The circles are possible destination locations, the square
the observed robot moving from right to left. Note the
change in representation of region (1), in which it goes
from being represented in its entirety to being broken
into 10 regions.

nation it was just before crossing the boundary. This is
illustrated in Figure 4. For this reason we are looking
at alternative representations that do not suffer from
this effect but maintain the same level of performance
increase as the implemented scheme.

The Real World

Any robot hoping to autonomously perform even sim-
ple tasks in a real-world environment, especially one in
which other autonomous agents exist, must have some
sensing capabilities. This may not be the case in a
static environment where the robot may be given a thor-
ough and complete model of the world and can there-
fore be assured that a generated plan will not fail due
to something changing outside of its control. The real
world, however, seldomly stays the same for any length
of time and cannot be thoroughly and completely mod-
eled. The ability to sense the environment and reason
about the results is therefore crucial if a robot is to be
flexible enough to perform effectively.

An autonomous agent working with other agents in
the real world can use its sensing capabilities to facili-
tate coordination and cooperation between agents. The
information gained from the sensors can augment any
existing information that agents have of each other and
can even possibly detect contradictions between the in-
formation sources. The problem with sensor-based in-
formation is the inherent noise and uncertainty that
accompanies it. No sensor returns perfect information
and the data-to-symbol conversion also results in infor-
mation loss. Dealing with such issues is a necessity for
any robot working in the real world.

The belief network architecture that we have imple-
mented handles these additional problems naturally.
Due to the probabilistic basis for the system, the un-

certainty that pervades the real world can be incorpo-
rated quite easily. As an example, instead of knowing
with surety (i.e. with probability of 1) the location of
another agent, there may be some degradation in this
certainty (some probability less than 1) and nearby lo-
cations now have some chance of being correct. The
probabilities actually employed depend upon a combi-
nation of the accuracy of the sensing system used to
gather the information, the process by which the infor-
mation is abstracted, the dynamic nature of the envi-
ronment, etc.

Factors that influence the plan recognition process
when operating in the real world include:

e Sensor Noise - Every real sensor system adds some
amount of noise to the information. Sometimes this
may be known and modeled, but the model is gen-
erally not perfect. Therefore the noise is not totally
eliminated from the data. This may have a great
influence on the effectiveness of a plan recognition
system if the observing agent needs to detect subtle
differences between the actions and/or behaviors of
other agents.

e Sensor (in)accuracy - All real sensors are limited in
their accuracy (e.g. due to finite resolution), with
results like that above, an agent may have difficulty
differentiating between actions.

e Sensor failure - Real sensors fail in any of a number of
ways. For example, they might simply fail to work,
rendering any sensor-based plan recognition system
useless (discourse or other information source-based
plan recognition would still be possible, of course).
Or a sensor failure may result in an an unexpected
change in the information in a manner that is very
difficult to detect. Or they might fail spuriously,
causing the sensing system to occasionally respond
with wildly erroneous results.

e Sensor to symbol inaccuracy - The abstraction pro-
cess by which raw sensor data is symbolized may not
be completely accurate, creating small discrepancies
between what happened in the the real world and
what the robot actually thinks happened. This may
have effects similar to that in 1. and 2. above.

e Sensor to symbol error - The process of abstracting
the raw data to the symbolic level might not be cor-
rect due to lack of complete knowledge of the complex
world.

e Sensor to symbol loss of information - Whenever raw
sensor data is abstracted to the symbolic level some
amount of information is inevitably lost. This loss of
information may or may not have some effect upon
the plan recognition process.

e Dynamic environment - The world in which an au-
tonomous robot will live will be constantly chang-
ing. Topography may change dramatically in a small
amount of time so that (at least in this domain) an
agents high-level goals (i.e. goal locations) might

change just as dramatically. If the overwatching
agent is not able to deal with this it may become
hopelessly confused trying to figure out the high-
levels goals of overwatched agents.

e Odometry error - A robot will naturally build up
some amount of error in its own position over time.
Without compensation for this, (by periodic redefini-
tion of its global position, modeling of the progression
of the error, etc.), the robot will not be able to ac-
curately calculate the current positions of observed
agents or goal locations.

e Time constraints - The real world may not be quite
as forgiving as a simulator when dealing with time.
There is a need to process incoming information
quickly enough to deal with changes in the environ-
ment in a timely manner. The inability to do this
may result in not observing some of an overwatched
agents’ actions/behaviors.

e Agent concurrence - Agents in the real world gener-
ally work in a truly parallel, asynchronous manner.
Simulator-based assumptions of pseudo-parallelism
and synchronization of agent’s actions must be
thrown out, perhaps resulting in a radical modifi-
cation of a simulator-developed system that did not
look forward to this issue.

e Commitment - Early commitment to what erro-
neously appears to be the watched agent’s high-level
goal may lead to behavior on the part of the over-
watching agent that is very costly, perhaps irrevo-
cable, and which places the overwatching agent in a
position from which it cannot accomplish its task.
Conservatism, at some level, therefore, must be em-
bedded within the system, so that the correct balance
is made between the cost of waiting for hypotheses
with more surety and the benefit from quickly infer-
ring the correct high-level goal.

The Plan Recognition Cycle

The plan recognition system that has been implemented
operates in a cyclical manner. CARMEL makes an ob-
servation of the other robot with the computer vision
system. The resulting image is processed, extracting
the relative orientation and distance of the TRC from
CARMEL. Absolute coordinates are then calculated
for the TRC based upon these values and CARMEL’s
own position (based upon dead-reckoning). CARMEL
then calculates the primitive action(s) performed by the
TRC since last being seen. This information is then fed
into the belief network as observations and propagated
through the network to update the destination location

beliefs.

Experimental Results

A series of experiments were run in the simulator ver-
sion of the system to explore the tradeoff of commit-
ment versus cost. In the domain in which we conducted

