
Plan Recognition for Real-World Autonomous Robots:Work in ProgressMarcus J. Huber and Edmund H. Durfee�Distributed Intelligent Agents Group (DIAG)Arti�cial Intelligence LaboratoryThe University of MichiganAnn Arbor, Michigan 48109-2110marcush@engin.umich.edu, durfee@engin.umich.eduAbstractAn agent operating in the real world must beable to coordinate its activities with those of otheragents. Traditionally, work in multiagent coordi-nation has assumed that agents can communicateabout their intentions or that they are coordinatedthrough the e�orts of a third party. In many en-vironments, however, reliance on communicationor on a coordinating agent is infeasible due to theunpredictable nature of the environment or to neg-ative side-e�ects of communication. We have de-veloped a multiple-resolution hierarchical schemeby which an agent can use observations to inferthe high-level goals of other agents. The researchdomain to which we have applied our scheme is co-ordinated motion and navigation among multiplerobots, both in simulation and in the real-world.Our hierarchical scheme makes probabilistic planrecognition possible in this domain, and it helps tofurther identify and begin solving crucial issues inplan recognition in physical domains.IntroductionAutonomous agents1 operating in the real world willnot be able to perform their tasks in isolation. At somepoint in time, these robots will come into contact withother autonomous robots, either intentionally or coin-cidently. The robots will then not be working merelywithin the con�nes of the already very di�cult dynamicand Murphy's Law-driven environment, but within alarger scheme wherein other intelligent agents must bedealt with. Conict over shared resources (time, space,unique items, etc.) will eventually occur, and oppor-tunities for synergistic cooperation might arise. If theagent is expected to accomplish its goals in multiagent�This research was sponsored in part by the NSF undergrants IRI-9015423, IRI-9010645, and IRI-9158473, and byDARPA under contract DAAE-07-92-C-R012.1We will use the words robots and agents synonymouslythroughout the paper as the given domain is a speci�c in-stance of the more general idea of multiple \intelligent" en-tities interacting in the real world.

situations, it must coordinate its plans with the plansof others.To coordinate its plans with those of others, anagent must have a model of the plans of each ofthe other agents. Traditional techniques in multia-gent planning and coordination [Cammarata et al.1983,Durfee and Lesser1987, George�1983] allow agents toexplicitly communicate about their intentions andplans. However, some environments might not admit tosuch explicit communication, either because the com-munication medium might be unreliable (sporadic in-terference) or using the communication medium mightintroduce new risks to the agents (such as being de-tected by unfriendly agents). For this reason, agentsmight prefer to attempt to infer the plans of each otherby passively observing the actions or e�ects of otheragents rather than actively communicating plans.As in any plan recognition system, the goal isto infer the high-level plans of another agent basedupon observations of the other agent's behaviors.While a predominant portion of plan recognition re-search has been in the context of such domainsas discourse analysis and story understanding (e.g.[Charniak and Goldman1990, Lochbaum et al.1990]),very little research has gone into applying the paradigmto autonomous robots in real-world situations. We haveimplemented a plan recognition system for multiple au-tonomous robots in a simulator and in the real worldto get a better understanding of the important issuesthat face coordination through observation among au-tonomous robotic systems.The simulated system operates within a MICE[Montgomery and Durfee1990] controlled environment,where agents move to and fro in a two dimensionalgrid world. Sensors are simulated, noiseless, and pre-cise. The implemented real-world system involves theoperation of multiple mobile robots performing tasksin an enclosed area of the robotics laboratory at theUniversity of Michigan. The robot is a Cybermotionmobile platform called CARMEL (see Figure 1) thatis equipped with a computer vision system that it usesto observe the other agent(s) in its vicinity. The otheragent(s) are TRC Labmate mobile platforms (see Fig-



Figure 1: The real-world plan recognition testbedure 1|the tube on top is the means by which CARMELidenti�es and tracks other agents). Given some observa-tions, the observing robot tries to infer the goals of theother robots and then respond in the \correct" manner.Initially only one robot is being observed moving from astart location to a goal location. In both environments,the overwatching robot, having inferred possible �naldestinations, tries to move to a location that comple-ments the most likely �nal destination (this could bethe same location, an adjacent location, etc.)The system's inferencing is done using a be-lief network implemented with the IDEAL system[Srinivas and Breese1989]. Evidence in the form of vi-sually perceived actions is input into the network andthen propagated through it. The high-level plans/goalsof the watched agent can then be hypothesized fromthe results. These high-level goals are possible desti-nation locations within the workspace. These are �-nite and enumerable, possibly some point of strategicor tactical interest to the watched robot. The watchedrobot's behavior is simply to determine the movementthat will take it toward its �nal destination. Given thatthe overwatching robot can detect the location and mo-tions of the watched robot, it can then try to infer thedestinations that the robot is trying to reach and actappropriately.In the following sections we will discuss the work donein developing the plan recognition system. We will startby discussing the representation scheme developed andused by the system, followed by a description of thebelief network architecture and function, and then de-scribe the results of several experiments that were per-formed to verify that the system worked as designed.In the �nal section we discuss some of the major exten-sions and modi�cations that we see for the immediatefuture.

�� ��Location �� ��Destination�� � �MoveZ Z Z Z Z~ �����=Figure 2: Belief Network ArchitecturePlan RecognitionBelief Net ArchitectureIn order to perform the necessary accumulation ofinformation and subsequent inferencing, we incorpo-rated a belief network (also called a Bayesian network)[Pearl1988] into the system. This network permitsthe insertion and accumulation of sensor-based obser-vations that get propagated throughout the network,resulting in the ability to hypothesize goals. The over-watching robot periodically senses the watched robotto determine the visible primitive actions (if any) thatwere performed by the observed robot. These observa-tions are added to the history of previously observedactions, and the beliefs of the belief network updated.With consistent positive reinforcing evidence, belief ina possible destination increases, while, with consistentnegative reinforcing evidence, belief in a possible desti-nation decreases.We show the simple belief network architecture inFigure 2. The states held by the location node are theregion representations that describe the overall map.The states held by the destination node are the possi-ble locations (in terms of x,y coordinates) that the over-watched agent might consider to be destinations. Themovement node contains the primitive actions that theoverwatching agent is looking for, namely movement inthe cardinal directions of north, south, east, and west,as well as staying in the same position, from the lasttime observed. The belief network represents the ideathat given a goal destination and the particular locationthat an agent is in, the next move is predictable. Thisassumes that the agent will move in a bee-line to thedestination from the given location and therefore doesnot handle situations where the agent is trying to trickthe watching agent by making feinting maneuvers or istaking a path that will take it around some obstaclethat is in the way.For the network:1. prior probabilities have to be determined for each ofthe possible states of the independent nodes (the lo-cation and destination nodes).2. conditional probabilities have to be determined forthe dependent nodes (the move node).



For the location node, the state that represents thecurrent position of the agent is set to the probabilityof 1.0 for the simulator version, since sensors are as-sumed to be perfect. We set this probability to somelesser value for the real world version, dependent uponhow much we trust the accuracy of our sensor system.If the robot is computing the location relative to itself,which may be fairly accurate, the con�dence in the sen-sor system may be quite high. On the other hand, if thecalculated position is �xed to some absolute coordinatesystem, the errors accumulating over time in the watch-ing robot's own odometry continually degrades the ac-curate positioning of the watched robot. In this case,the con�dence level will drop over time until such timeas the agent has a chance to get its bearings and repo-sition itself. The overwatching agent initially considerseach of the destination locations as equiprobable, withadjustments to the beliefs occurring through the prop-agation of belief after evidence has been accumulatedthrough observations.The conditional probabilities (e.g. the probabilitythat the observed agent, given its current location andassuming that it is trying to reach destination location1, will move toward the east) are calculated based as anormalized discrete approximation of the relative like-lihood of moving in a particular direction while movingto any location within a destination region from any-where within the watched agent's current region.Hierarchical Topology RepresentationOur work to date has dealt with agents moving and nav-igating through a at world. As such, we have needed arepresentation of the area in which the agents are mov-ing, with particular distinction given to special goal lo-cations (those deemed interesting for some reason). Foroperation in very small areas, or where the granular-ity of representation can be quite large, enumeration ofpossible locations (e.g. at centimeter intervals) mightbe useful. Larger areas, or the need for a �ner granu-larity of representation, require a di�erent approach|some form of abstraction|as the system can becomebogged down by the great number of explicitly repre-sented states required at each node of the belief net-work.One early product of the research has been the de-velopment of a representation for the environment inwhich the robots will operate. Belief networks su�ergreatly from the combinatorial explosion of the num-ber of conditional probabilities required as the numberof states in connected nodes increases. A �ner resolu-tion representation requires a larger number of current(location) and goal (destination location) states to rep-resent the same area. While other hierarchical schemesalready exist (e.g. oct/quad trees, K-d trees), a sim-ple hierarchical representation scheme more suited tothe domain was developed for the initial scenarios. Amechanism to dynamically modify the belief networkwas developed in conjunction with this.
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s ss s s s(1)(21)(221)(222)(2231)(2232)(2233)(2234)(224)(23)(24)(3)(4) 1 23 4quadrantcoding schemeFigure 3: Examples of representations. The �lled circlesare possible destination locations, the hollow square isthe observed robot.We opted for a simple scheme reminiscent of quadtrees. The entire area of operation is represented atmultiple resolutions, with a section being marked aswhether it is interesting (i.e. contains within its boundsa watched agent or a possible destination) or uninter-esting. Each quadrant of a region (square for now) maybe further divided into four sections. The level of reso-lution required for each portion of the entire map is keptat a minimum; a section of the map is further dividedonly if it contains within its bounds both a watchedagent and one or more possible destinations. The over-watching agent needs the distinction between them sothat it can determine whether or not a watched agentis sitting at a destination location. Examples of severalmaps and their representations are given in Figure 3.Dynamic Modi�cationThe world in which robots will work will change dynam-ically. A particular representation of the world, then,will only work for a limited time before it becomes in-accurate, invalid, etc. Representations of dynamic por-tions of the world, then, will need to change dynami-cally themselves. We have implemented the representa-tion scheme so that it undergoes dynamic change as therobots move about (see Figure 4). At each sensor cy-cle (synchronized with agents' actions in the simulatorbut variable in the real implementation) the overwatch-ing robot checks the current world model to see if therepresentation is valid and minimal. Validity dependsupon the criterion of being able to distinguish betweenwatched robots and destinations in the representationwhile a minimal representation is as described above.If either of these criteria are not met, then modi�ca-tions to the representation are made, with correspond-



ing changes to the belief network that uses the repre-sentation.As the representation changes to accommodate theabove criteria, the beliefs accumulated up to that timeare redistributed from the old representation to the newrepresentation. When abstraction of a quadrant occurs,the belief in the parent region is the sum of the beliefsof the child regions. Similarly, when a region of therepresentation is broken into its corresponding quad-rants, the belief assigned to the parent region is equallydivided between the child quadrants that potentiallycontain destination locations.Representational E�ects on PerformanceEarly experiments were conducted using belief networksin which the entire mapped area was represented ata single, high, resolution. The resulting performancewas very poor and became intolerable once larger areaswere tried. A lower resolution of representation was anoption, but not a viable one, as only correspondinglylarge motions could then be detected.The largest single factor in the performance of thesystem is the number of states held at each node inthe network. The number of conditional probabilitiesrequired is the cross product of all of the states inthe location, destination, and move nodes. Even moresigni�cantly, the time required to propagate evidencethroughout a belief network increases exponentially, sothat representing a large map at a single, high resolu-tion would be impractical.The multiple resolution scheme implemented dramat-ically improves the performance of the system. Thenumber of states required to represent a region increasesonly by three for every doubling of the size of the re-gion. This compares to a fourfold increase for a singleresolution scheme. At the time that the change in therepresentation took place we were running experiments(in MICE) with agents in a 15x15 grid. The new rep-resentation scheme was tried using a 32x32 grid, witha resulting performance improvement of a minute-and-a-half compared to four seconds, a 22.5 times improve-ment. And this was a direct comparison; the constantresolution scheme was never run on a 32x32 grid. Hadit been, two orders of magnitude of improvement wouldnot have been surprising.While the multiple resolution representation schemeresults in a large increase in the performance level ofthe system, there exists at least one major de�ciency;there exists a potential for a dramatic change in therepresentation whenever the watched agent crosses aquadrant boundary. The map representation remainsconstant as long as no borders in the current represen-tation are crossed by the overwatched agent. But, asdescribed above, the system dynamically changes therepresentation throughout a run. The signi�cance ofthe representation change depends upon how close toa possible destination the overwatched agent is after itcrosses a boundary, compared to how close to a desti-

s ss s s s(1)(21)(22)(23)(24)(3)(4)(a) s ss s s s(11)(12)(13)(141)(142)(143)(1441)(1442)(1443)(1444)(2)(3)(4)(b)Figure 4: Representation change upon border crossing.The circles are possible destination locations, the squarethe observed robot moving from right to left. Note thechange in representation of region (1), in which it goesfrom being represented in its entirety to being brokeninto 10 regions.nation it was just before crossing the boundary. This isillustrated in Figure 4. For this reason we are lookingat alternative representations that do not su�er fromthis e�ect but maintain the same level of performanceincrease as the implemented scheme.The Real WorldAny robot hoping to autonomously perform even sim-ple tasks in a real-world environment, especially one inwhich other autonomous agents exist, must have somesensing capabilities. This may not be the case in astatic environment where the robot may be given a thor-ough and complete model of the world and can there-fore be assured that a generated plan will not fail dueto something changing outside of its control. The realworld, however, seldomly stays the same for any lengthof time and cannot be thoroughly and completely mod-eled. The ability to sense the environment and reasonabout the results is therefore crucial if a robot is to beexible enough to perform e�ectively.An autonomous agent working with other agents inthe real world can use its sensing capabilities to facili-tate coordination and cooperation between agents. Theinformation gained from the sensors can augment anyexisting information that agents have of each other andcan even possibly detect contradictions between the in-formation sources. The problem with sensor-based in-formation is the inherent noise and uncertainty thataccompanies it. No sensor returns perfect informationand the data-to-symbol conversion also results in infor-mation loss. Dealing with such issues is a necessity forany robot working in the real world.The belief network architecture that we have imple-mented handles these additional problems naturally.Due to the probabilistic basis for the system, the un-



certainty that pervades the real world can be incorpo-rated quite easily. As an example, instead of knowingwith surety (i.e. with probability of 1) the location ofanother agent, there may be some degradation in thiscertainty (some probability less than 1) and nearby lo-cations now have some chance of being correct. Theprobabilities actually employed depend upon a combi-nation of the accuracy of the sensing system used togather the information, the process by which the infor-mation is abstracted, the dynamic nature of the envi-ronment, etc.Factors that inuence the plan recognition processwhen operating in the real world include:� Sensor Noise - Every real sensor system adds someamount of noise to the information. Sometimes thismay be known and modeled, but the model is gen-erally not perfect. Therefore the noise is not totallyeliminated from the data. This may have a greatinuence on the e�ectiveness of a plan recognitionsystem if the observing agent needs to detect subtledi�erences between the actions and/or behaviors ofother agents.� Sensor (in)accuracy - All real sensors are limited intheir accuracy (e.g. due to �nite resolution), withresults like that above, an agent may have di�cultydi�erentiating between actions.� Sensor failure - Real sensors fail in any of a number ofways. For example, they might simply fail to work,rendering any sensor-based plan recognition systemuseless (discourse or other information source-basedplan recognition would still be possible, of course).Or a sensor failure may result in an an unexpectedchange in the information in a manner that is verydi�cult to detect. Or they might fail spuriously,causing the sensing system to occasionally respondwith wildly erroneous results.� Sensor to symbol inaccuracy - The abstraction pro-cess by which raw sensor data is symbolized may notbe completely accurate, creating small discrepanciesbetween what happened in the the real world andwhat the robot actually thinks happened. This mayhave e�ects similar to that in 1. and 2. above.� Sensor to symbol error - The process of abstractingthe raw data to the symbolic level might not be cor-rect due to lack of complete knowledge of the complexworld.� Sensor to symbol loss of information - Whenever rawsensor data is abstracted to the symbolic level someamount of information is inevitably lost. This loss ofinformation may or may not have some e�ect uponthe plan recognition process.� Dynamic environment - The world in which an au-tonomous robot will live will be constantly chang-ing. Topography may change dramatically in a smallamount of time so that (at least in this domain) anagents high-level goals (i.e. goal locations) might

change just as dramatically. If the overwatchingagent is not able to deal with this it may becomehopelessly confused trying to �gure out the high-levels goals of overwatched agents.� Odometry error - A robot will naturally build upsome amount of error in its own position over time.Without compensation for this, (by periodic rede�ni-tion of its global position, modeling of the progressionof the error, etc.), the robot will not be able to ac-curately calculate the current positions of observedagents or goal locations.� Time constraints - The real world may not be quiteas forgiving as a simulator when dealing with time.There is a need to process incoming informationquickly enough to deal with changes in the environ-ment in a timely manner. The inability to do thismay result in not observing some of an overwatchedagents' actions/behaviors.� Agent concurrence - Agents in the real world gener-ally work in a truly parallel, asynchronous manner.Simulator-based assumptions of pseudo-parallelismand synchronization of agent's actions must bethrown out, perhaps resulting in a radical modi�-cation of a simulator-developed system that did notlook forward to this issue.� Commitment - Early commitment to what erro-neously appears to be the watched agent's high-levelgoal may lead to behavior on the part of the over-watching agent that is very costly, perhaps irrevo-cable, and which places the overwatching agent in aposition from which it cannot accomplish its task.Conservatism, at some level, therefore, must be em-bedded within the system, so that the correct balanceis made between the cost of waiting for hypotheseswith more surety and the bene�t from quickly infer-ring the correct high-level goal.The Plan Recognition CycleThe plan recognition system that has been implementedoperates in a cyclical manner. CARMEL makes an ob-servation of the other robot with the computer visionsystem. The resulting image is processed, extractingthe relative orientation and distance of the TRC fromCARMEL. Absolute coordinates are then calculatedfor the TRC based upon these values and CARMEL'sown position (based upon dead-reckoning). CARMELthen calculates the primitive action(s) performed by theTRC since last being seen. This information is then fedinto the belief network as observations and propagatedthrough the network to update the destination locationbeliefs. Experimental ResultsA series of experiments were run in the simulator ver-sion of the system to explore the tradeo� of commit-ment versus cost. In the domain in which we conducted


