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1 Introduction

The University of Michigan's CARMEL and SRI International's Flakey were the �rst- and

second-place �nishers respectively at the AAAI Robot Competition in July, 1992. The

approaches used by the two top teams are markedly di�erent, but there are also some high-

level similarities. This paper is intended to compare the two architectures, focusing on

abilities exhibited in the robot competition and the underlying approaches used by the two

teams. A shorter version of this paper appeared originally in [6].

1.1 Competition Overview

An AI Magazine article by competition organizers Tom Dean and Pete Bonasso [7] describes

in detail the rules, scoring, and �nal standings of the 1992 AAAI Robot Competition.

Briey, the competition consisted of three stages. In Stage 1, each robot was required

to roam through an octagonal arena roughly 21 meters in diameter, avoiding people and

obstacles. In Stage 2, each robot was required to �nd and visit ten objects randomly placed

amongst the obstacles in the ring. In Stage 3, each robot was required to visit three of the

objects it had discovered in Stage 2 in an order speci�ed by the judges immediately before

the stage began; additional points were awarded to the fastest robots. Each of the three

stages lasted 20 minutes, and each was scored by three judges. In all stages, the obstacles

were boxes roughly 1 meter high grouped together to form di�erent shapes. In Stages 2 and

3, the objects were tall poles three inches in diameter; the teams were allowed to tag each

pole with their own distinguishing markers. Stage 1 was a qualifying round of sorts; robots

that did not exhibit minimum competency in this stage were not to be allowed in Stages

2 and 3. In the actual competition, all robots passed Stage 1, and a separate award was

given for the high-scoring robots in this stage of the competition. The scores from Stages 2

and 3 and were combined to determine the robots` rankings in the competition.

In Stage 1, Flakey �nished second and CARMEL �nished third (the �rst place �nisher,

TJ2 from IBM, competed in a smaller ring for little robots). Flakey impressed the judges

with its awless object avoidance, while CARMEL was impressive for its smooth travel at

high speeds. In Stage 2 CARMEL �nished in �rst place, having found and visited all ten

objects in less than ten minutes. Flakey �nished in third place (behind Buzz of Georgia

Tech) having found and visited eight of the ten objects, using the full 20 minutes allotted.

In Stage 3 CARMEL again �nished in �rst place, with a time of just over three minutes,

beating TJ2 of IBM by 30 seconds (TJ again competed in the small ring). Flakey �nished

fourth in Stage 3 with a time of around 11 minutes. When the Stage 2 and Stage 3 scores

were combined, CARMEL �nished �rst in the �nal ranking and Flakey �nished second.

While CARMEL excelled in both Stage 2 and Stage 3, Flakey's high �nal score was the

result of their consistent performance in both stages. Other teams (such as Buzz and TJ2)

�nished very high in one stage and very low the other.
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1.2 Physical description of the two robots

There are many physical similarities between the two robots. Both robots are fairly large,

heavy, and roughly cylindrical; both are wheel driven and use dead reckoning (described

below); and both are equipped with multiple computers and sensors. This section describes

the two robots in detail.

1.2.1 Physical overview: CARMEL

CARMEL (which is an acronym for Computer Aided Robotics for Maintenance, Emergency,

and Life-support) is based on a commercially available Cybermotion K2A mobile robot

platform. CARMEL is a cylindrical robot about a meter in diameter, standing a bit less

than a meter high when equipped with a large hollow shell (for holding electronics and

other equipment) on top (see Figure 1). CARMEL moves using three synchronously driven

wheels; it has a top speed of approximately 780 mm/sec and a turning speed of 120 deg/sec.

The hexagonal top is decoupled from the wheels, so that when the robot itself turns, the

orientation of the top is unchanged. Wheel encoders calculate the robot's displacement

from a homed position; this calculation is called dead-reckoning. Errors accumulate in the

dead-reckoned position due to wheel slippage; dealing with these errors is a major concern

of both teams.

CARMEL is equipped with a ring of 24 ultrasonic sonar sensors evenly distributed

around the robot's torso, each with a two-meter range and sensing cone of about 30 degrees.

A grayscale CCD (charge-coupled device) camera was added to CARMEL to give it visual

capabilities. The camera is mounted on a rotating tower, allowing it to turn 360 degrees,

independent of the robot's orientation.

CARMEL has three computers working cooperatively while the robot is running. A

motor control processor (Z80) receives motion and steering commands from the top-level

computer and controls the robot's wheel speed and direction. This processor also maintains

the robot's dead-reckoning information. An IBM PC XT clone is dedicated to the sonar

ring, controlling the �ring sequence and �ltering sonar crosstalk and external noise from the

sensor data. Finally, an IBM PC clone running a 33 MHz, 80486-based processor performs

the top-level functions of the system. Image processing, planning, absolute positioning,

etc. are all done on this computer. This computer communicates with the sonar- and

motor-control processors via RS-232 links (9600 baud). CARMEL was also given a voice

synthesizer, primarily to communicate with the judges and programmers.

1.2.2 Physical overview: Flakey

Flakey is a mature (some might say old) mobile robot, fully functional in 1985 (see Figure 2).

Since 1985, the hardware has remained stable with relatively minor additions to the sensing

and communications capabilities. In form, it is a custom-built mobile robot platform ap-

proximately one meter high and .6 meter in diameter. There are two independently-driven

wheels, one on each side, giving a maximum linear velocity of about 500 mm/sec and turning

5



Figure 1: CARMEL stands just under a meter tall and moves at speeds up to 780 mm/sec. A

ring of 24 sonars surrounds the robot's torso; a grayscale CCD camera mounted on a rotating tower

provides visual capabilities. The monitor and keyboard are used for debugging, and not used in

actual competition.

velocity of about 100 degs/sec. Flakey is equipped with optical wheel encoders to provide

the same kind of dead-reckoning information as CARMEL. Like CARMEL, Flakey has ul-

trasonic sonar sensors good to about two meters, but instead of a uniform ring, FLAKEY

has four sensors facing front, four facing back and two facing to each side. Additionally,

Flakey has eight touch-sensitive bumpers around the bottom perimeter of the robot cou-

pled to an emergency-halt reex. For detailed object recognition, it employs a structured

light sensor, which is a combination of a light stripe and a video camera that is capable of

providing a dense depth map over a small area in front of Flakey.

FLAKEY has three computers working in parallel, two onboard. A Z80 motor controller

is responsible for the sonars and wheel motors. A Sun 3 computer controls the structured

6



Figure 2: Flakey is about one meter high and moves at speeds up to 500 mm/sec. Twelve sonars

(four in front, four in back, and 2 at each side), and eight touch-sensitive bumpers surround the

robot. A structured-light sensor provides a dense depth map over a small region in front of Flakey.

light sensor and performs image processing and geometrical calculations necessary to pro-

duce a depth map; it also communicates with an o�board Sparcstation by a radio ethernet.

The Sparcstation is responsible for all high-level interpretation and control functions: sen-

sor integration, navigation, map registration, and so forth. Finally, Flakey has a speech

synthesizer to communicate with programmers and judges.

Like many other teams in the 1992 AAAI Robot Competition, the SRI team could not

get the radio link to work correctly in the noisy competition arena. Fortunately, they were

able to tape a portable Sparcstation to Flakey, and make a direct ethernet connection.

Also, the bright mercury-vapor lamps in the auditorium interfered with the structured light

sensor, and were turned down to half power during the SRI runs in Stages 2 and 3.
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Figure 3: CARMEL's hierarchical software design consists of a high-level planning routine that

calls lower-level routines for moving, correcting dead-reckoning errors, and vision. At the bottom of

the illustration are the sensors.

1.3 Software overview of the two robots

There are a number of di�erences between the software designs of the two robots. These

di�erences will be highlighted in the rest of the paper. This section provides a brief overview

of each robot so as to provide context and structure to the following discussion.

1.3.1 Software overview: CARMEL

CARMEL has a hierarchical software structure. At the top level is a planning system that

decides when to call subordinate modules for movement, vision, or recalibrating the robot's

position. Each of the subordinate modules is responsible for doing low-level error handling,

and must return control to the planner in a set period of time, perhaps reporting failure;

the planning module will then determine whether to re-call the submodule with di�erent

parameters or to resort to another course of action. Figure 3 shows the major components

of CARMEL's software architecture.

The movement module is a point-to-point, goal-directed obstacle-avoidance algorithm

called VFH (described in Section 2.1.1). Using CARMEL's sonar sensors, VFH will guide
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the robot from one prespeci�ed point in a world coordinate system to another while avoiding

any obstacles, stationary or moving. The vision module is a computer vision system that

will locate the objects for the robot in Stages 2 and 3. The vision system uses a single camera

and a one-pass algorithm to detect horizontally striped, barcode-like tags on each of the ten

objects. A distance and heading to each object is returned. The recalibration module uses

object locations to correct CARMEL's dead-reckoning errors, using triangulation to three

known objects (this process is described in Section 4.2.1).

The software system of CARMEL was kept modular to allow for a team design, whereby

small groups could work independently on one level of the design. The software system of

CARMEL was also kept simple so that it could be run completely on board, allowing

CARMEL to navigate at high speeds while smoothly avoiding obstacles. This is in contrast

to most of the other robots in the competition that were sending sensor information to o�-

board processors. Some of these robots operated in a jerky, stop-and-go fashion, moving a

bit, but then having to stop and wait while sensor information was sent o� board, processed,

and the results transmitted back to the robot. This architecture, therefore, allows CARMEL

to be extremely reactive in the situations where reactivity is very important, namely, when

the robot is moving about in the unknown and possibly dynamic world.

1

1.3.2 Software overview: Flakey

Flakey, in contrast to CARMEL, is a distributed system. The system architecture is or-

ganized around the local perceptual space (LPS), an egocentric Cartesian plane in which

all sensor information is registered, and various arti�cial constructs (or artifacts) are en-

tered. The LPS gives Flakey an awareness of its immediate environment, and is critical in

the tasks of combining sensor information, planning local movement, and integrating map

information. The perceptual and control architecture makes constant reference to the local

perceptual space. The diagram of Figure 4 shows the major components.

In Brooks' terms [4], the organization is partly vertical and partly horizontal. The

vertical organization occurs in both perceptual (left side) and action (right side). Various

perceptual routines are responsible for both adding sensor information to the LPS and

processing it to produce surface information that can be used by object recognition and

navigation routines. On the action side, the lowest level behaviors look mostly at occupancy

information to do obstacle avoidance. The basic building blocks of behaviors are fuzzy rules,

which give Flakey the ability to react gracefully to the environment by grading the strength

of the reaction (e.g., turn left) according to the strength of the stimulus (e.g., distance of

an obstacle on the right).

To move to desired locations, more complex behaviors are used to guide the reactive

behaviors. These behaviors utilize surface information and artifacts and may also add

artifacts to the LPS as control points for motion. At this level, fuzzy rules allow Flakey to

1

In Stages 2 and 3, CARMEL did noticably pause to take and process camera images (which takes

approximately 2 seconds per image), but this activity was kept to a minimum. CARMEL did not pause

while processing sonar information (as teams that were sending this information o� board did), which enables

it to travel smoothly at high speeds.

9



Local Perceptual Space

Self−localization
         and
Map registration

  Tolerant
global map

sensors actions

Surface
construction

Object 
recognition
and
registration

Raw depth
information

Reactive
behaviors

Tasks

Purposeful
behaviors

Figure 4: Flakey's system architecture has multiple routines updating and referring to the local

perceptual space; these routines operate in parallel. In this illustration, perceptual routines are on

the left, and action routines are on the right. The vertical dimension gives an indication of the

cognitive level of processing, with high-level behaviors and perceptual routines at the top. A map-

location module continuously matches local perceptual information to a stored global map, updating

Flakey's global position. All modules operate independently in a distributed fashion.

blend possibly conicting aims into one smooth action sequence. Finally, at the task level,

complex behaviors are sequenced and their progress is monitored through events in the

LPS. The horizontal organization comes about because behaviors can choose appropriate
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information from the LPS. Time-critical behaviors such as obstacle avoidance rely on very

simple processing of the sensors because this information is available quickly; however, these

routines may also make use of other information when it is available, e.g., prior information

about expected obstacles that comes from the map [13].

To navigate through extended regions, Flakey uses a tolerant global map that contains

prior, imprecise spatial knowledge of objects in the domain. For the competition, this map

initially contained the walls of the arena, along with their approximate length and angles

between adjacent walls, and was completed by Flakey with the positions of the poles during

Stage 2. There is no consistent global Cartesian map since building such a map can be

di�cult, and imprecise local connections are all that is required for successful navigation.

A set of predicting and matching routines operate to localize Flakey within the map and

keep the LPS consistent with it.

Flakey's software system is designed so that all processes operate in parallel with a basic

cycle time of 100 milliseconds. This means that Flakey is continuously processing sensor

information, recognizing objects, updating its map, and deciding what to do next, all in

real time. Even though some processes, such as map registration, could take many seconds

of information gathering and processing to complete, all processes were written so that they

save partial results and complete within the cycle time. Thus, Flakey could keep moving

even as it was looking for objects and updating its map; it was the only robot except for

Scarecrow (see [7]) that never stopped moving during all stages of the competition.

The modular and distributed design of the system means that it is both exible and

extensible. The SRI team incorporated large portions of code previously written for navi-

gation in an o�ce environment, including most of the perceptual routines and the low-level

behaviors. Work on competition-speci�c behaviors, tasks, pole recognition, and navigation

began only one month prior to the start of the competition. The standard language for

modules is Common Lisp, although a few of the lowest-level perceptual routines are written

in C. A small real-time distributed operating system, written in Common Lisp in a standard

Unix environment, su�ced for realtime operation on the Sparcstation, making it easy to

debug and upgrade the software and hardware.

1.4 Overview of paper

In creating a robot for the competition, both teams had to deal with a number of signi�cant

issues. In most cases, CARMEL and Flakey used very di�erent approaches. Of course, for

both teams the decision on which approach to use was often not made purely on perfor-

mance, but on constraints such as time, �nancial resources, and previous research e�orts.

However, the structure of the competition, in which a set task is performed in a �xed envi-

ronment and performance is scored by objective judges, allows one to analyze various design

decisions in a somewhat objective fashion based purely on performance. That is what this

paper attempts to do. The four main issues that arose in the competition are identi�ed

as: Moving, Object Recognition, Mapping, and Planning. These four issues will be pre-

sented in the following four sections, each of which introduces the issues, describes each

team's approach, and analyses the two approaches. The following section describes the two
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teams' overall performances in the competition; this is followed by a section tha summarizes

the architectural di�erences. Lastly, a more general comparison of the similarities in the

approaches used by the two teams and di�erences between the two architectures is given,

allowing insight into what both teams did right in order to succeed at the competition.

2 Issues in Moving

In Stage 1, both robots had to roam the arena, avoiding all obstacles and people. Avoiding

obstacles is no trouble if you're stationary; the robots were also requested to roam the ring

in either a directed or random fashion. In this case \roaming" was not de�ned precisely,

but indicates that the robot should not be con�ned to a small area of the arena, e.g., turn

in a small circle.

2.1 Obstacle Avoidance

Both robots used sonar sensors as their primary obstacle avoidance sensors. Sonar sensors

are both unreliable (subject to noisy readings) and imprecise, giving only approximate

information about the distance and direction of objects. To combat this, both teams used

a two-part strategy for handling sonar sensors. The �rst part was an attempt to minimize

noise and imprecision and the second part was to map out the environment in such a way

that the remaining imprecision would have minimal e�ect. Finally, both robots had to use

their map to choose a direction of motion. Each of the team's approaches is described

below.

2.1.1 Obstacle avoidance: CARMEL

To deal with sonar sensors noise, CARMEL used a new algorithm called EERUF (Error

Eliminating Rapid Ultrasonic Firing), which allows CARMEL to rapidly �re and sample

the ultrasonic sensors for fast obstacle avoidance. The innovative feature of EERUF is its

ability to detect and reject ultrasonic noise, including crosstalk. The sources of ultrasonic

noise may be classi�ed as either external sources, such as ultrasonic sensors used on another

mobile robot operating in the same environment; or internal sources, such as stray echoes

from other onboard ultrasonic sensors (see Figure 5). The latter phenomenon, known

as crosstalk, is the reason for the slow �ring rates in many conventional mobile robot

applications: most mobile robots are designed to avoid crosstalk by waiting long enough

between �ring individual sensors, allowing each echo to dissipate before the next sensor is

�red. EERUF, on the other hand, is able to detect and reject about 97% of all erroneous

readings caused by external ultrasonic noise or crosstalk.

In general, external noise is random and can be detected simply by comparison of con-

secutive readings. Crosstalk, however, is mostly a systematic error, which may cause similar

(albeit erroneous) results in consecutive readings. EERUF overcomes this problem by �ring

each sensor after individual, alternating, delays that disrupt the repetitiveness of crosstalk

12



A B

Figure 5: Crosstalk occurs when a sonar sensor picks up stray echoes from other onboard sonars.

For example, when sonar A is �red, the sounds may reect against walls; the reected sound may

be picked up by sonar B. Sonar B is unable to distinguish this from its own reected signal.

errors, rendering these errors detectable by the method of comparison of consecutive read-

ings [3].

Since EERUF practically eliminates the problem of crosstalk, it allows for very fast

�ring rates. With EERUF, a mobile robot with 24 ultrasonic sensors can �re all sensors

within a period of 60 ms. On CARMEL, EERUF was only partially implemented, because

CARMEL's ultrasonic sensor system was built before the development of EERUF, allowing

a minimum �ring period of 160 ms. Even at this rate, CARMEL's �ring rate is two to �ve

times faster than that of most conventional sonar implementations. This fast �ring rate is

a crucial factor that allows CARMEL to react in time to unexpected obstacles, even when

traveling at high speeds.

To map the obstacles in the environment, CARMEL uses another innovative approach

called a Vector Field Histogram (VFH). One of the most popular approaches to obstacle

avoidance is based on the principle of potential �elds. However, in the course of experimen-

tation with this method, Koren and Borenstein [8] found that at higher speeds potential-

�eld methods will inherently cause oscillations when travelling near obstacles or in narrow

13



(a) (b)

Figure 6: CARMEL constructs a histogram grid as it moves through unfamiliar territory, to collect

data from ultrasonic range sensors. In (a) above, CARMEL is at a start location, and heading

roughly northeast. In (b), CARMEL has moved, collecting sonar readings in the process, and

formed a histogram grid. The histogram grid is illustrated as dark squares; the larger the square,

the higher the certainty of an object at that location.

passages. To overcome these problems, they developed VFH. The VFH method uses a two-

dimensional Cartesian grid, called the histogram grid (illustrated in Figure 6), to represent

data from ultrasonic (or other) range sensors. Each cell in the histogram grid holds a cer-

tainty value that represents the con�dence of the algorithm in the existence of an obstacle

at that location. This representation was derived from the certainty grid concept that was

originally developed by Moravec and Elfes [11]. In the histogram grid, certainty values are

incremented when the range reading from an ultrasonic sensor indicates the presence of an

object at that cell.

Based on data in the histogram grid, the VFH method creates an intermediate data

representation called the polar histogram. The purpose of the polar histogram is to reduce

the amount of data that needs to be handled for real-time analysis while at the same

time retaining the statistical information of the histogram grid, which compensates for the

inaccuracies of the ultrasonic sensors. In this way, the VFH algorithm produces a su�ciently

detailed spatial representation of the robot's environment for travel among densely cluttered

obstacles, without compromising the system's real-time performance [1, 2]. The spatial

representation in the polar histogram can be visualized as a mountainous panorama around
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Figure 7: Using the data from the histogram grid in Figure 6b, CARMEL creates a second represen-

tation of objects called the polar histogram. In (a) above, histogram cells within the active window

are used to form vectors centered at CARMEL; longer vectors represent objects that are nearer and

more certain. In (b), these same vectors are represented in the polar histogram, which resembles a

series of mountains and valleys. The target location is at 315 degrees relative to CARMEL's current

location, but CARMEL will travel at 290 degrees | the valley indicates that this is a safe direction

to travel. In (a), this means that CARMEL will pass between obstacles A and C on its way to the

target, rather than between obstacles A and B.

the robot, where the height and size of the peaks represent the proximity of obstacles, and

the valleys represent possible travel directions (see Figure 7). The VFH algorithm steers

the robot in the direction of one of the valleys, based on the direction of the target location.

The combination of EERUF and VFH is uniquely suited to high-speed obstacle avoid-

ance (CARMEL travelled at speeds of up to 780 mm/sec in the competition). Manz,

Liscano, and Green [10] showed that VFH fares favorably when comparted to several other

obstacle avoidance methods.

2.1.2 Obstacle avoidance: Flakey

Flakey uses two basic techniques for obstacle avoidance. The local perceptual space in-

tegrates sensor readings from the sonars, in a manner similar to the occupancy grid of
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CARMEL; but additional artifacts are introduced by subsequent perceptual processes to

aid in maneuvering. On the action side, Flakey was unique among the robots at the com-

petition in using fuzzy control rules as a programming language for behavior.

Much as CARMEL has its histogram grid, Flakey also uses the local perceptual space

(LPS) to register multiple sonar readings over time. In addition, the LPS contains artifacts,

either reconstructed surfaces or movement control points, that help in obstacle avoidance.

Figure 8 shows a typical LPS con�guration. The space represents a four-meter square of

the environment in a plan view, with Flakey in the middle and oriented towards the top

(the forward direction for Flakey), as shown. The LPS is egocentric: Flakey always stays at

the center of the space in the same orientation, so that as Flakey moves, the world rotates

about it. This representation makes it very easy to write perceptual and action routines:

for example, to follow a wall on the right, a perceptual routine looks for wall objects on

the right side of the LPS, and action routines try to move Flakey to keep the wall lined up

vertically.

Within the LPS are various forms of sensor readings and information extracted from

them by the perceptual routines. Each of the small black squares represents the center of

one sonar reading. A bu�er of the last 100 readings (about �ve seconds' worth) is kept in

the LPS, and updated according to Flakey's motion. The end result is a series of readings

that outline various objects, especially along the sides of Flakey during straight-line motion.

There are perceptual routines that attempt to �t line segments to coherent sequences of

sonar readings. One such long segment is on the right of Flakey, labeled with \W" as a

possible candidate for a wall. These segments, essential for navigation (see Section 5), are

also useful in �lling in missing information required for obstacle avoidance. Because of the

placement of the sonars to the front and sides, Flakey has large blind spots on the forward

diagonals. By noting the trend of a side segment bearing towards the front, it is possible

to hypothesize a blocked diagonal, even though it cannot be sensed.

The large rectangle at the top of the LPS is an area of sensitivity monitored by a

perceptual process. For controlling Flakey's motion, many such areas were de�ned as a

means of understanding what obstacles were present and deciding how to avoid them. The

sensitivity area in the �gure indicates that there is something a moderate distance ahead

and to the right of Flakey. Since the sensitivity areas correspond to actions, they do not

move in the LPS. For example, if Flakey were to turn left, out of the way of the obstacle,

then the obstacle would rotate right in the LPS, and the area of sensitivity would no longer

register the obstacle.

Once the local perceptual space is constructed, Flakey uses fuzzy control rules to control

its motion and avoid obstacles. A fuzzy control rule has the form:

A! c ;

where A is a fuzzy expression composed by fuzzy predicates and the fuzzy connectives AND,

OR and NOT, and c is a control action. A typical control rule might be:

If an obstacle is close on the left, then turn right 4 degrees.
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Figure 8: Flakey's local perceptual space (LPS) gives some indication of Flakey's forward speed

and rotation. The arrow pointing from the center is a velocity vector; its length is proportional to

the speed. Just above Flakey and slightly to the left is a direction set point: the motor controller

will attempt to turn Flakey to keep the set point aligned straight ahead. The large rectangle at the

top of the LPS is a sensitivity area that indicates that there is an object a moderate distance ahead

and to the right of Flakey. A collection of sensor readings at the right edge of the LPS is a candidate

for a wall, labelled \W".

A fuzzy predicate can be partially true in a given state of the world. Namely, a fuzzy

predicate has a number in the interval [0; 1] as its truth value, with 0 standing for complete

falseness, 1 for complete truth, and intermediate values for partial satisfaction. E.g.,\close"

has truth value 0.5 if distance is 700 mm (see Figure 9). Max, min, and complement to 1

are used to compute the truth value of disjunction, conjunction and negation, respectively.
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Figure 9: The fuzzy predicate \close" used by Flakey has a truth value of 1 for distances less than

400 mm, and 0 for distances greater than 1000 mm. An object that is in between 400 mm and 1000

mm away will have a truth value between 0 and 1, as illustrated above.

The truth value of A determines the desirability of applying the control action c. At

every cycle (i.e., every 1/10 of a sec), all the rules are checked: the truth value of their

premises are evaluated, and a corresponding desirability value for the conclusion is gener-

ated. A simple \defuzzi�cation" technique uses desirability values to merge the outputs

of all the rules into one tradeo� control action. (This contrasts with typical non fuzzy

approaches, where only one rule is selected at each cycle.) For instance, a desirability of

0.6 for the action \turn left 10 degrees" and a desirability of 0.3 for the action \turn right 4

degrees" are synthezised into the one command \turn left 5 degrees". Control actions typi-

cally refer to forward velocity and angular orientation, by sending the appropriate set-point

to Flakey's motor controller. A detailed description of Flakey's fuzzy controller is contained

in [14].

The rules are organized into sets called behaviors in a modular fashion. For example,

one set of four rules deals with emergency maneuvers when there is an obstacle very close to

Flakey (the Protect behavior). The modular organization has several advantages. First,

a behavior can integrate a number of rule sets designed for tackling di�erent aspects of one

common goal. Second, behaviors can be composed to produce a more complex behavior

that will smoothly integrate between di�erent, competing goals, producing an tradeo� action

that satis�es each of them as much as possible. The two obstacle avoidance behaviors are

good examples of this technique. The Protect behavior is appropriate when obstacles

are close to Flakey relative to its speed: it slows Flakey down and turns sharply towards

open space. A longer-range avoidance procedure (the Deflect behavior) operates when

the immediate space is clear. It does not slow Flakey down, but turns it more gently for

smoother deection from obstacles. The Avoid Obstacles behavior is a combination of

these two.
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The most critical part in the implementation of the fuzzy controller was the tuning of

fuzzy predicates. This was mainly based on experimentation. Emphasis was placed on the

reliablity of obstacle avoidance; this was made more di�cult by blind spots on the diagonal.

2.1.3 Obstacle avoidance: Analysis

Obstacle avoidance in the competition meant, �rst and foremost, that the robot should not

run into stationary or moving objects, especially the judges. In this respect both robots

did remarkably well, despite attempts by the judges to surprise and contain them. Flakey's

fuzzy control resulted in impressive reliability and smoothness of movement. The two-part

obstacle avoidance rules worked as required, forcing emergency stops and maneuvers when a

close object was detected, and moving more smoothly in relatively open space. The overall

impression is best summarized in some of the judges' comments: \Very smooth control.

Excellent movement among obstacles. Only robot felt I could sit or lie down in front of."

(which he actually did!) Flakey moved at a relatively slow 200 mm/sec, not touching any

obstacles or judges. Blind spots on the diagonal were responsible for the slowness: objects

in these positions had to be relatively close before they would be seen by the sonars.

2

Like TJ2 from IBM, the winner of this stage of the competition, CARMEL was distin-

guished by a \zippy" motion around obstacles in open terrain, very pleasant to watch. It

moved at a speed of 300 mm/sec in this stage of the competition, noticeably faster than

Flakey. However, under prodding from the judges, CARMEL touched two obstacles and

grazed a judge. This was partly due to the fact that many variables in CARMEL's obstacle

avoidance code need to be tuned for the environment in which it is running. The Michigan

team had assumed an environment with dynamic but benign obstacles. Both teams no-

ticed that behavior could be improved markedly by tuning the parameters of the avoidance

routines.

2.2 Roaming

In Stage 1 of the competition, the robots were expected to \roam" the arena, moving to

di�erent areas. The two teams used di�erent approaches to achieve this behavior. CARMEL

used a point-to-point travel strategy that (along with its high-speed movement) ensured

good coverage. Flakey was provided with a wandering behavior composed of lower-level

\go-forward" and \avoid-obstacles" behaviors.

2.2.1 Roaming strategy: CARMEL

Since the VFH obstacle avoidance algorithm requires a goal location to move towards, the

Michigan team needed a way to give CARMEL a series of goal locations that ensured that

CARMEL would cover a substantial portion of the arena. Consequently, CARMEL's Stage 1

planner is simply a hardcoded sequence of goal locations, such as that shown in Figure 10;

2

Flakey has since added sonars to look on the diagonal, and obstacle avoidance now works reliably at

400 mm/sec.
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(a) (b)

Figure 10: To ensure coverage of the arena, CARMEL was programmed to visit a series of eight

points represented in (a) above. As CARMEL moved through the eight-point cycle, dead-reckoning

errors caused the star to rotate relative to the arena, as illustrated in (b). This leads CARMEL to

visit even more regions in the arena.

the robot's goal is to reach successive locations in the \star". Navigating between goal

locations requires CARMEL to cross approximately through the center of the ring, relying

upon the VFH-based obstacle-avoidance algorithms to get there. Visiting all of the goal

locations indicated in the �gure, then, requires several passes across the ring, each pass

taking CARMEL into new territory at the periphery. Once all of the goal locations have

been visited, CARMEL starts over again. This approach provides CARMEL with a roaming

behavior, somewhat tailored to the environment, but for an otherwise goal-less task.

3

As dead-reckoning errors accumulate, the location of the multi-pointed star moves about

relative to the actual arena, getting rotated and translated relative to the actual coordinate

system, as shown in Figure 10. The star pattern is robust to rotation errors (the ring is still

fully covered if the star rotates, as goal points rotate towards positions vacated by other

goal points). Placing the points of the star outside of the ring allows the star pattern to

overcome small translation errors as the ring is still covered if the star translates by small

amounts. Since the goal points are located outside of the arena's boundary, CARMEL is

never able to actually reach the points. VFH prevents it from going through walls, and

3

Although the goal points are hardcoded in this implementation, they could also be computed on the y.
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instead the robot times out and then moves on to the next goal point.

4

CARMEL is also

able to recognize situations in which it is trapped in a concave formation of obstacles. The

map used by VFH allows detection of concave formations so that recovery is possible.

Experimentation showed that using the star worked quite well, even for extended runs.

Part of this success may be due to the rotation of the goal points from dead-reckoning

errors. As CARMEL cycled through the star pattern multiple times, this rotation provided

enough variation of the path taken between the points that CARMEL was able to more

thoroughly cover the entire arena. As the points rotated, CARMEL would head into areas

of the periphery that were not initially designated as goal points. The path variance would

also aid in avoidance of trap situations encountered during previous cycles. The shifted path

would eventually change enough that CARMEL would approach the concave formation of

obstacles at a di�erent angle or bypass it altogether.

A wall-following algorithm was also considered to reorient and reposition CARMEL at

intervals (similar to SRI's registration process, described in Section 3.2). This would have

been necessary if CARMEL would have had to wander the arena for days instead of minutes

(to account for the signi�cantly large translation errors), but the idea was rejected because

it wasn't needed for a 20-minute run. In fact, it was never apparent that there was any

signi�cant translation error in any of the runs that CARMEL made.

2.2.2 Roaming strategy: Flakey

The SRI team noted in simulation and experimentation that a very simple strategy would

satisfy the requirement of roaming. This strategy is to simply go forward until an obstacle

is encountered, use the obstacle avoidance routines to deect the forward motion, and then

continue on in the new direction. Given the relatively open environment of the arena, there

was little chance of getting stuck in one particular place.

The team implemented an elementary Wander behavior as a composition of Avoid

Obstacles and Go Forward behaviors. As mentioned, Avoid Obstacles guides Flakey

away from occupied areas, and keeps it from bumping into close objects. Go-Forward

just keeps Flakey going at a �xed velocity, given as a parameter. The relative predominance

of one component over the other in the resulting Wander behavior is determined by the

fuzzy state variable \approaching-obstacle": Avoid Obstacles is most active when there

is an obstacle in the way, otherwise it is quiescent, leaving control to Go Forward. The

visual result for an external observer is that Flakey \follows its nose", while turning away

from obstacles as it approaches them. Maximum speed was set at 200 mm/sec in open

areas, and half that near obstacles.

One further feature of the Avoid Obstacles behavior is its ability to \unstick" Flakey

if it got into a local minimum. This situation is recognizable by a continuous inability to

go forward: the Go Forward behavior is frustrated. In this case, a 90-degree rotation is

performed to give Flakey a new heading.

4

Upon initiation of navigating to a goal point, CARMEL estimates a maximal amount of time to allot

for the movement. Surpassing this alloted time halts the robot, which at this time may perform further

planning to recover from the failed move, or, as in this case, ignore the failure.
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It is easy to implement more elaborate roaming strategies for Flakey, given the ability

of fuzzy control rules to accommodate multiple goals. For example, a strategy similar to

that of forays (see Section 5) would de�ne arbitrary lanes within the arena; the borders

of the lanes are fuzzy, so that Flakey could go out of the lane to avoid an obstacle, then

return when the coast is clear. However, the simpler Wander strategy su�ced for the

competition.

2.2.3 Roaming strategy: Analysis

Both CARMEL and Flakey have the ability to avoid local minima in roaming the arena,

the basic requirement for not getting stuck in one place. In terms of covering more ground

in the arena, it is likely that CARMEL would have done better. Although covering a large

percentage of the ring was mentioned as a scoring criterion in the rules, it was not a strong

criterion to the judges, as long as it was demonstrable that the robots would be able to

roam freely under varying obstacle con�gurations.

Flakey placed ahead of CARMEL in this stage of the competition, and was only 1 point

behind the winning entry, TJ2 from IBM. Part of the reason why CARMEL did not do as

well was because CARMEL's wandering strategy is constrained by the fact that the VFH

obstacle-avoidance algorithm is goal-driven, i.e, it must move to a point, rather than move

in a direction.

5

This purposeful motion towards a goal point led to CARMEL's lower score

in this round; the judges expected to be able to \herd" the robots in a particular direction,

and CARMEL was not programmed to respond to such prodding. Instead, it doggedly

kept trying to head towards its goal location. In retrospect, it might have been better if

CARMEL had been programmed to \give up" on a goal point much sooner. The \soft-fail"

approach of fuzzy control rules and Flakey's simple wandering strategy worked better in

this regard.

3 Issues in Object Recognition

Object recognition is an essential component of Stages 2 and 3 of the competition. The

eight-foot high PVC poles that represented objects in the competition must be recognized.

Also, recognition of boxes and walls could prove to be advantageous depending on the

navigational methods and strategies employed. The variations in sensing capabilities and

underlying design philosophies for the University of Michigan and SRI robots lead to widely

di�ering approaches to object recognition.

3.1 Object recognition: CARMEL

The ability to accurately detect and identify object poles was important for earning the

maximum number of points, as well as for keeping position and orientation errors within

5

Of course, a distant goal point could be generated (one that CARMEL would be guaranteed to never

reach because it was outside of the arena), and this would have the same e�ect as telling CARMEL to head

in a particular direction.
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tolerable limits (see Section 4.2.1), consequently, CARMEL's system was designed from the

onset to be as reliable, as accurate, and as fast as possible. Various object identi�cation

schemes were considered, but a vision-based system had an important advantage in its

potential for long-range sensing. A major concern was the inherently heavy computation

generally required for image processing. However, by intelligently designing the object pole

tags, the computation was greatly reduced.

3.1.1 Object pole tags

The object pole tag design used for CARMEL consists of a black and white stripe pattern

placed upon PVC tubing with a four-inch diameter, allowing the tags to be slipped over

the three-inch-diameter object poles. Example object tags are shown in Figure 11. The

basic stripe pattern is six evenly spaced horizontal black bands of 50 mm width, with the

top of the top band and the bottom of the bottom band spaced 1000 mm apart. The white

gaps between the black bands correspond to the bit positions in a �ve-bit word. A white

space between two bands corresponds to an \o�" bit, while �lling the space with black

corresponds to an \on" bit. The �ve bits between the six bands can then represent 32

unique objects. One of the most signi�cant aspects of the striped PVC tags was that they

look the same from every direction (barring lighting changes). This had a great impact

upon the exploration algorithm used, as the robot did not have to approach object poles

from a particular direction. Rather, CARMEL had only to get within visual range of an

object pole in order to identify it.

3.1.2 The object recognition algorithm

The commitment to computer vision for object identi�cation and localization introduced

many issues, such as reliability, robustness, accuracy speed and range. Although the Uni-

versity of Michigan team experimented with pre-processing methods, the �nal vision system

had no image preprocessing. This would have added complexity to the system and slowed

down the vision process and, hence, the entire process of exploration. Color image process-

ing methods were also explored. The red and green components of a color camera were used

to segment bright orange bands from background noise. However, the additional overhead

of processing two images instead of one was ine�cient, and a gray-scale vision system was

preferred because of reduced processing and simplicity. The algorithm had experimentally

shown to be immune to most background noise and color vision methods were not necessary.

As mentioned above, object identi�cation and localization is performed with a single-

pass, gray-scale, vision algorithm. About two seconds of processing time on the 486-based

computer is required per image. The structure of the algorithm is a simple �nite-state

machine. The algorithm goes down each column of the image looking for a white-to-black

transition that would mark the start of a potential object. When a white-to-black transition

is detected the algorithm switches to a state that looks for a black-to-white transition. When

such a transition is found, the algorithm calls it a band. The band is measured and this

measurement is used to detect future bands in the same column (i.e., all future bands should
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Figure 11: Object recognition for CARMEL was done using a �ve-bit pattern on PVC poles. The

poles above illustrate the bit patterns for objects numbered 5, 10, and 17.

be of the same size or three times that size). The algorithm then resumes looking for a white-

to-black transition. After �nding enough bands to comprise a tag the algorithm stores the

tag id and length. Once a column is complete, the eligible objects are heuristically merged

with objects found in previous columns. Objects are slowly \grown" in this fashion until

an object's edge is found and no more columns are merged into it. Once the entire image is

processed, another heuristic merging process is invoked that merges multiple segments of an

object that happened to slip through the initial merging algorithm. The distance between

the top of the top band and the bottom of the bottom band, in terms of the number of pixels

in the image, is then used to estimate the actual distance from the camera to the object.

The location of the object on the image plane is then used to calculate the orientation of

the tube from the robot.

One unexpected problem was that moving objects in the scene tend to generate many

false positive object sightings, resulting in signi�cant added computation. The interlaced

scanning of the CCD cameras electronics require 1/60th of a second between even and odd

scan lines, and the boundaries of moving objects create an interlacing of bright and dark

bands one pixel wide. These readings are initially agged as potential objects that require

additional heuristic processing. While the algorithm removes most of the false readings

using heuristics, the additional computations are a burden that can be eliminated.

To avoid this extra processing, a band-width constraint was added, requiring at least two

pixel widths on the image plane before acceptance. Theoretically this would decrease the
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e�ective distance of identi�able objects. In practice however, this is almost never the case

because it is very rare for all of the black bands to be discernable when they are only one

pixel wide on the image plane. Usually only a few bands are noticeable at such distances,

in which case the object cannot be identi�ed anyway. Experimentally, the minimal band

width for e�ective recognition was found to be two to three pixels.

3.2 Object recognition: Flakey

In the recognition process, it is important to distinguish between object types and individu-

als. Type recognition occurs when the process identi�es the object as belonging to a class,

e.g., a chair or a box or a person. Individual recognition occurs when the object is identi�ed

as a unique individual, di�erentiated from others in the class. Obviously, the latter is a

stronger form of recognition and conveys more information.

The basic design philosophy of the SRI team is to leave the environment as it is, rather

than engineering it to make the task easier. Thus, Flakey's recognition capabilities are based

solely on the naturally occurring objects in the arena: boxes, object poles and walls. Because

these objects bear no marks that Flakey's perceptual system could use to individualize them,

type rather than individual recognition is performed. Flakey uses external information to

promote type recognition to individual recognition, e.g., the location of an object pole serves

to di�erentiate it from all other object poles. This process is called registration, since it

primarily involves registering a perceptually-typed object with stored information about an

individual of that type.

Flakey's type recognition routines are able to recognize all the objects in the arena

(boxes, walls, and object poles) with varying degrees of certainty, depending on the situation

and the sensor. This section contains a description of type recognition for walls and object

poles, the two most important objects for navigation. Subsequent sections on map design

and planning deal with the problem of registration.

3.2.1 Walls

Flakey recognizes walls on the basis of coherent sets of its side sonar readings. Low-level

perceptual routines segment the readings to form piecewise linear surfaces. Since walls are

the longest straight objects in the environment, a simple length �lter is su�cient for iden-

tifying candidates. Candidates are then either accepted of rejected as real wall signatures

by the registration routines described in Section 4.2.2 below. Figure 8 shows a typical wall

section identi�ed by the perceptual routines.

Flakey also has the potential to integrate surfaces constructed from the structured light

sensor with those found by the sonar routines. While this method would lead to more robust

recognition in general, it did not produce enough of a performance gain in the competition

domain to warrant its use.
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3.2.2 Object poles

Flakey's pole-recognition capabilities are based solely on physical properties of unenhanced

object poles (namely, their size and roundedness) and a priori environmental knowledge

made available to all participants. The key environmental features are that non-pole objects

are signi�cantly bigger than object poles and are at least one meter from all other objects

(speci�cally walls, boxes and object poles). Flakey and Huey (from Brown University) were

the only entries that attempted recognition of unenhanced object poles.

Flakey's method of object pole-recognition employs a two-tier approach. Objects that

might possibly be object poles (referred to as candidates) are detected from sonar input.

A veri�cation routine based on structured-light data is used to categorize objects as pole

objects or non-pole objects.

For veri�cation, a shape-interpretation routine uses the structured-light depth map to

�nd any pole objects in its �eld of view. This routine extracts from the data those rounded

objects whose sizes are close to that of object poles, �ltering out objects that fail the

constraint of non-proximity to other objects. Figure 12 illustrates the quality of the pole

signatures produced by the structured light routines; extracting rounded objects from this

data involved simple tests on the Laplacian of the one-dimensional input. Recognition of

object poles using structured light in this manner is highly accurate; however, Flakey's

vision is nearsighted: the range of the structured-light system is restricted to a conical area

one to four feet in front, within a 30-degree angle.

It would have been impossible to �nd many object poles within the alloted 20-minute

period using the structured light veri�cation routine, given the large size of the competition

ring. For this reason, Flakey monitors its side sonar readings while in transit for the presence

of candidate object poles. The sonars cover a much broader area than does the structured

light, extending to approximately two meters on either side of the robot. Moving in a

straight line, Flakey sweeps out an area in front and to the sides of approximately four

meters. Once a candidate has been detected, Flakey temporarily deviates from its current

path in order to get the candidate in the �eld of view of the structured light, and verify or

disqualify it.

Sonar information is used to identify candidate rather than full-edged object poles due

to the di�culties involved in interpreting sonar data. Fragments of boxes and walls can

sometimes have sonar signatures that look very similar to the signatures of object poles.

For example, boxes in sonar range whose corners pointed directly at Flakey often produce

sonar signatures that are indistinguishable from those of object poles. The di�culties

involved in di�erentiating object poles from fragments of other objects are most problematic

when Flakey is turning towards or away from such objects, due to di�culties that arise in

registering successive sonar points accurately with respect to each other.

Candidate object poles are derived from clusters of sonar points that satis�ed conditions

of coherence, total area and nonproximity to other objects. Some pruning of candidates

is done based on historical information: areas where object poles could not possibly exist

were marked in the local coordinate system. For example, object poles can not be situated

in areas close to long surfaces (from either walls or boxes) nor near failed candidate object
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Figure 12: Top: A numerical and pictorial display of the structured-light depth signature of a

pole located approximately one meter in front of Flakey. The points are the reconstructed spatial

position of the pole surface. The data readings are taken directly from the camera; lower readings

indicate the reection is from further away. A value of 0 indicates that no surface was detected

within the depth limits of the structured light system for that position. The semi-circular shape of

the pole is easily detected from the smoothed Laplacian of the one-dimensional depth information:

a pole appears as a sequence of strong positive readings followed by two to �ve negative readings,

then another sequence of strong positive readings. Intuitively, such a pattern in the Laplacian cor-

responds to two zero-crossings of the second derivative, one for each side of the pole.

Bottom: The structured-light signature of a box corner viewed from approximately the same dis-

tance.

poles. In addition, classi�cation of a location as having a candidate pole is delayed until

the candidacy test was passed several times. This last �ltering is essential in eliminating

candidates that were not object poles. It also leads to a seemingly theatrical behavior on

Flakey's part: often, a candidate would not be declared until after Flakey had passed one

or two meters beyond it. At that point, Flakey would turn around and proceed back to the

candidate for veri�cation using the structured light.

Flakey's pole-recognition routines worked extremely well in the competition. The struc-

tured light veri�cation routines were completely accurate, recognizing all object poles that

occurred within the structure light �eld and not misclassifying any non-pole objects as

object poles. Flakey's use of sonars to detect candidate object poles proved invaluable in

the competition. Five of the eight object poles found by Flakey were originally detected

using the sonar recognition. The various methods used to �lter candidate object poles were
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critical to Flakey's performance, given that the validation/invalidation of a candidate pole

consumed valuable exploration time (anywhere from 20{45 seconds). Only one non-pole

object (a box) was labeled as a candidate pole; Flakey succesfully classi�ed this object as

a non-pole using the structured light routine. Flakey did pass by two object poles during

its �rst circuit of the ring without having the sonars detect them as candidates. These

omissions occurred because the object poles were too close (approximately 20 cm) from the

side sonars of the robot. However, Flakey found the object poles on its second pass around

the ring, when it passed by them at greater range.

3.3 Issues in Object Recognition: Analysis

The recognition components of CARMEL and Flakey performed extremely well during the

competition and were instrumental to the success that both teams enjoyed. It is impossible

to rank one approach as superior to the other, given the vastly di�erent technologies and

assumptions upon which they are based. Both, however, have certain characteristics that

distinguish them.

Flakey's recognition routines had the virtue of not requiring modi�cations to the envi-

ronment. Although the rules permitted doctoring object poles in order to make them more

easily recognized, the SRI team demonstrated that such modi�cations were unnecessary.

Rather, reliable object type recognition was possible using only physical characteristics of

the objects and simple domain constraints (such as nonproximity to other objects).

Flakey performed recognition for classes of objects (both walls and object poles) based

on physical characteristics of those objects. As such, particular object poles or walls were

distinguishable only by using information about the individual's location. In contrast,

CARMEL detected particular object poles by recognizing specialized tags that served both

to facilitate perception and identify individual object poles. As such, CARMEL performed

recognition of tagged individuals, and only those individuals.

CARMEL's use of long-range sensing provided a strategic advantage in Stages 2 and 3

of the competition since object poles could be found from 12 meters away (over half the

diameter of the ring). In this regard, CARMEL contrasts sharply with Flakey who could

recognize object poles and candidates only within its local perceptual space. This point

is discussed further in the following section. Note that CARMEL's exploration strategy

worked well for this competition, in which the poles were guaranteed to be visible over the

obstacles, but this strategy would not be as successful in many domains.

4 Issues in Mapping

In order to successfully participate in Stage 3 of the competition, it was necessary for the

robots to generate maps of the environment during Stage 2. These maps would include, at a

minimum, the location of poles that had been discovered. In addition, maps could contain

further information that teams felt would be useful, such as the position of obstacles or

walls. Complementary to map construction is the problem of self-localization, which involves
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having the robot determine where it is relative to the map. A critical issue faced by both

robots in solving these problems was the inaccuracies inherent to dead-reckoning.

4.1 Map design

Automated map generation remains a topic of current research for the �eld of robotics.

Michigan and SRI chose two very di�erent approaches in the design of maps for their

robots.

4.1.1 Map design: CARMEL

CARMEL used a single global coordinate system to keep track of object locations. One

corner of the arena was labelled as (0,0). As CARMEL took an image, its vision routine

would return the heading and distance of each object in the scene. That heading and

distance was transformed to the global coordinate system and the object was placed in the

map.

CARMEL also keeps a separate histogram grid map of the entire arena, which is used

for obstacle avoidance. This map also has a single global coordinate system that is identical

to the coordinate system used to record object locations. When CARMEL wished to move

to an object it was simply a matter of setting the goal of the obstacle-avoidance system to

the coordinate location of the object (actually, to a point slightly in front of the object).

The histogram grid map was periodically cleared of readings to eliminate clutter from errors

and moving objects, thus no obstacle locations were permanently maintained. CARMEL

could use the histogram grid map of obstacles to plan a local path around known obstacles,

however, this was only used when CARMEL was trapped and the VFH obstacle avoidance

system could not extricate CARMEL from the trap.

4.1.2 Map design: Flakey

In contrast to CARMEL, Flakey does not try to maintain a global coordinate system map.

The primary reason is that Flakey's sensing is too short range to construct a reliable map

of large spaces using triangulation techniques. Consider Figure 13, in which Flakey's sensor

zones are superimposed on the arena. If Flakey were given a completely accurate Cartesian

map with all the objects indicated, it could navigate by going to the nearest object, reducing

its dead-reckoning errors by sensing the object, move on to the next object, and so on.

There are enough objects in the ring to prevent dead-reckoning errors from accumulating

too much between objects. However, the competition rules stated that no prior knowledge

of the location of poles or obstacles would be allowed. So Flakey has to construct the map,

a much harder task than just staying registered. Because Flakey can only sight one object

at a time, it cannot use triangulation to reduce its dead-reckoning errors, and these will

accumulate during map construction. By the time it travels from one end of the arena to

another, the errors are substantial, and render the map-construction process futile.
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Figure 13: The relative range area of Flakey's sensors is small compared to the size of the arena

and the distance between objects. The robot and its sensor zones are the small object in the lower

right corner. Flakey can not see more than one object at a time, and signi�cant distances separate

objects. It is impossible to perform triangulation among the objects.

Instead of a global Cartesian map, Flakey relies on a representation of space called

a tolerant global map. This map is a network of places, called patches, and connections

between them. It is \tolerant" in the sense that the connections can contain imprecise metric

information. For the competition, each wall was chosen to be a patch, and its approximate

length and the angle of its neighboring patches were stored. Figure 14(a) shows the two

patches for walls A and B. The metric information was derived by an imprecise survey of

the arena using a tape to measure the length of the walls, and a protractor for the angles

between walls. The survey took only a few minutes, with the resulting imprecision visible

in Figure 14(b). In fact Flakey itself could have carried out this survey to the same degree

of accuracy, which is one of the advantages of the tolerant global map.

Each patch contains several elements:

� Landmarks. These are detectable sensory features that can be used to keep Flakey
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Figure 14: Flakey's representation of space is called a tolerant global map, comprised of a network

of local patches. In (a), two wall patches are shown with their approximate lengths and the angle

between them. The crossed axes are local Cartesian coordinate systems that are used for local

navigation within each patch. In (b), Flakey's a priorimap of the arena walls is laid out in Cartesian

coordinates. The map was constructed by an imprecise survey of the arena using a tape to measure

the length of the walls, and a protractor for the angles between walls. Note the large accumulated

error in traversing all the segments of the ring.

registered with respect to the patch. Note that landmarks do not have to be points; in

the competition, both wall junctions and entire wall surfaces were used as landmarks.

� Local coordinate system. Each patch has its own local Cartesian coordinate system

for dead-reckoning movement.

� Behavioral information. Patches are \behavior-centered" in that movement to the

borders of the patch is speci�ed in terms of behaviors.

� Connections to other patches.

The \patchwork" representation of space lends itself to two di�erent modes of navigation.

Over small distances, dead-reckoning with respect to the local coordinate system is possible.

The landmarks of the patch are used to keep Flakey registered with respect to this local

system. Dead-reckoning movement is useful for various activities; in the competition, these

included moving to a candidate pole to verify it with the structured light sensor, revisiting

targeted poles and making forays into the interior of the arena (Section 4.2.2).

The second mode of navigation is behavior-based, and does not require precise dead-

reckoning capability. For the wall patches, the obvious means to get from one end of the

wall to another was the FOLLOW-WALL behavior. Behavioral movement is tolerant of
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imprecision in the geometry of the patch. Even if the representation of walls as straight

segments is inaccurate, the wall-following behavior can follow walls with substantial degrees

of curvature, reliably achieving the goal of getting to the end of the patch.

4.1.3 World modelling: Analysis

As mentioned above, global Cartesian maps are generally inappropriate for large spaces be-

cause of the accumulation of dead-reckoning errors. CARMEL's dead-reckoning capabilities

and long-range sensing were su�ciently good to enable the use of a single global Cartesian

map for the competition ring. Because the SRI team used only walls and their junctures as

landmarks (rather than adding unique tags to the poles) and because Flakey's sensing was

limited in range, the SRI team opted instead for a tesselated view of space, a series of local

maps linked together.

The use of a global map combined with its long-range sensing capabilities gave CARMEL

a marked advantage over Flakey in the competition. The global coordinate system made

it easy both to �nd objects and to determine trajectories for navigating among them. Had

the arena been much larger, managing a single global coordinate system map would have

been di�cult and a system of linked local maps, like that used by Flakey, might have been

necessary.

Flakey's tolerant global map led to a more involved process for �nding and visiting

objects, however, this approach was essential to Flakey's good performance. Division of

the ring into local spaces of moderate size with well-de�ned landmarks (walls and their

junctions) made it possible to limit the accumulation of dead-reckoning error, whereas

operating within a single Cartesian coordinate space would have caused Flakey to become

lost quite rapidly as dead-reckoning errors accumulated. Flakey's ability to rerecognize poles

that it had discovered previously demonstrated that the registration of poles with respect

to local coordinate systems was a success. Although Flakey encountered some di�culties

in the use of the tolerant global map (as discussed further in Section 5), the SRI team feels

it was indispensible to Flakey's performance.

4.2 Position Correction

Both CARMEL and Flakey used dead reckoning to keep track of their position and orien-

tation in Stages 2 and 3. Because dead reckoning grows increasingly inaccurate over time

(due to wheel slippage, etc., particularly in the orientation of the robot), some means of

reorienting the robot at intervals was required. Both teams employed landmarks to adjust

the robot's beliefs about its position, although di�erent types of landmarks were used by

each.

4.2.1 Position correction: CARMEL

There are many di�erent approaches to position determination, including mounting bea-

cons or returning to a speci�c home position. These approaches require engineering the
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Figure 15: Three-object triangulation can be used to recalibrate the robot's position when dead-

reckoning errors have accumulated. To use this method, the locations of three objects A, B, and C

are known, and the directions to the three objects from the perspective of the robot are known; the

robot's location is unknown. In (a), objects A and B, plus the angle between them (relative to the

robot) are used to calculate a circle; the robot is somewhere on the perimeter of this circle, but its

exact location is not yet known. In (b), a second circle is similarly calculated, using objects B and

C. The two circles intersect at two points: the location of object B and the location of the robot.

environment and/or repeatedly returning to certain locations, activities that are generally

not desirable, and possibly not feasible. A better solution for absolute positioning is one

that uses objects already found in the environment (i.e. landmarks), in this case the object

poles.

The method used on CARMEL for triangulation is based on circle intersection (see [5]

for an overview of three-object absolute-positioning algorithms). Given objects A, B, and

C, a circle is formed with objects A, B, and the angle between them as viewed from the

robot, as shown in Figure 15. Because this angle is a relative measure, the known x and y

coordinates of the robot are not required. A second circle is formed similarily with objects

B, C, and the angle between them. The two circles intersect at two points: object B's

location and the robot's location. Therefore, the robot's location and orientation can be

determined.

As in most triangulation methods (see [5]), this method is a�ected by errors in an

object's location and angle measurement. Error in the angular separation between objects

was less than 1 degree; object distance was similarly quite accurate, typically within 2%

of the actual distance. Also, the robot's position, with respect to the objects, determines

how sensitive the absolute positioning solution is to these errors. It was discovered that the

accuracy of the triangulation method was highly dependent on whether or not the robot

was inside a triangle formed by three viewed objects. When inside such a triangle, the error

in absolute positioning is very small (on the order of a few tens of centimeters). However,
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small errors in object position cause large triangulation errors when the robot is outside a

triangle of objects. A heuristic search was employed to �nd the best combination of three

objects, in the most recent visual sweep, with which to perform the triangulation. This

might fail, however, if there were an insu�cient number of objects in the most recent visual

sweep, or if the objects seen were too poorly localized. CARMEL would then have to move

to a point where it is inside a triangle formed by three objects whose locations are known

precisely enough to be useful, perhaps taking a new visual sweep to improve the accuracy

of the triangulation. Note, however, that this approach assumes that CARMEL is never

terribly lost | the robot must be able to �nd its way into a triangle of three objects with

certainty. Otherwise, more drastic recovery mechanisms are called for. In practice runs,

CARMEL never became lost to such a large extent.

Unfortunately, although the algorithm was tested extensively in simulation and on

CARMEL, last-minute changes at the competition prevented its incorporation. CARMEL

was able to compensate for dead-reckoning errors using other means (see Section 5). How-

ever, the success of a global coordinate system map relies on an absolute positioning algo-

rithm like the above.

4.2.2 Position correction: Flakey

Because the SRI team did not add any identifying artifacts to the domain, it would have

been extremely di�cult for Flakey to recover in the event that it became lost. For this

reason, it was critical that Flakey maintain a reasonably accurate estimate of its position

at all times. Given the patchwork nature of the tolerant global map, Flakey's position is

de�ned in terms of both a current patch and a position within the local coordinate system

of the patch. In order to acquire and maintain this knowledge, Flakey exploits the most

stable features of its environment, the walls, as its chief navigational aid while in transit.

Essentially, Flakey \feels" its way around the environment by keeping sonar contact with

the walls, in much the same way that a blind person might use touch. Forays into the

interior of the arena can be made to explore or to visit previously discovered poles but

Flakey will always return to the current wall in order to reregister its position. Making a

foray is a risky venture: during a foray, Flakey must rely solely on dead reckoning. The risk

arises that Flakey's expectations about the position of the wall are su�ciently inaccurate

to make it impossible to locate the wall at the end of the foray.

Navigating to adjacent walls is achieved through the behavior Follow-Perimeter:

this behavior executes a sequence of Follow-Wall behaviors over the successive walls

of the arena. When the end of the current wall approaches, Flakey switches to the patch

of the upcoming wall. Using prior knowledge about wall lengths and angles, Flakey can

generate a rough estimate of its own position. However, Flakey will revise this estimate

once it has perceived the new wall. Flakey can compute the coordinates of the intersection

of this and the previous wall. The intersection marks the origin of the local coordinate

system of the current patch, while the patch wall determines the orientation of the x-axis

of the system. As such, the vertices of the octagonal arena are Flakey's main landmarks for

orienting itself in a new patch. Any pole discovered while in this patch is registered with
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respect to this landmark: its coordinates relative to the vertex are stored in the tolerant

global map, together with the patch name.

Figure 16 shows a snapshot of Flakey's navigation along the perimeter. The double line

is a wall artifact, representing Flakey's belief about the position of the current wall. The

wall artifact is created initially based on Flakey's prior knowledge about the shape of the

ring. Flakey's progress along the wall is measured by the double arrow on the wall artifact,

which is updated based on dead reckoning.

Dead reckoning errors will eventually cause the registration of a wall artifact to deteri-

orate as Flakey proceeds along the wall, thus Flakey uses sensing to update the correspon-

dence of the wall artifact to the real wall, and hence, also to update its own position within

a patch. This updating process is called registration. Registration proceeds in three steps:

1) Find candidate wall segments; 2) Filter the segments to �nd true wall segments; and 3)

Update the position of the wall artifact to the true wall. Wall candidates are found using

straight-line segments extracted from the side sonar data. In Figure 16, a strong wall candi-

date has been found and marked with a \W." The �ltering process [12] evaluates candidates

for the likelihood of them being an actual wall. It uses several sources of information: in-

trinsic properties of the candidate such as its length, the expected position and possible

deviation of the wall, geometric constraints (no candidates should ever be found behind a

known wall), and the nature of the false alarms that could occur (straight-line segments

from box obstacles). In the �gure, the wall candidate is relatively long and corresponds well

with the estimated wall position; hence, it is accepted as being part of the true wall.

To update the wall artifact, the orientation and endpoints of the wall are shifted to

correspond to the accepted candidate. In the case of Figure 16, the shift will be small, giving

a slight correction to the orientation of the wall artifact. Over a distance of ten meters,

however, the dead reckoning errors can be signi�cant, making the constant registration

provided by sensing essential. Recall that updating the position of the wall with respect to

Flakey corresponds to updating the coordinates of Flakey with respect to this patch's local

coordinate system.

The wall registration procedure, especially �ltering, requires a priori knowledge of the

location of walls. This knowledge need not be very precise; for the competition, crude es-

timates of wall lengths and angles of intersection were made by hand and input to Flakey.

Figure 14b displays just how approximate those measurements were: the picture was ob-

tained by drawing the successive clockwise walls from a �xed start wall using a priori

knowledge given to Flakey. Throughout the competition, Flakey would constantly engage

the walls with its sonars, making only limited forays (about 7 meters deep) into the arena

interior when necessary. If Flakey were started at a known point along a wall, then it should

keep registered throughout its travels.

There is always the danger that the mismatch between wall artifacts and actual walls

will become too great for the registration routines to handle. This could happen in a number

of ways: if the walls were obscured for too long a stretch by obstacles, or an interior foray

lasted too long, or an obstacle was mistakenly identi�ed as a wall. In such cases, substantial

mismatches would be detected by failed expectations: Flakey would place the wall artifact
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Figure 16: Flakey navigates by referring to wall patches. The long double line is a wall artifact: a

straight-line segment of �xed length that serves as the x-axis of the patch. The origin of the wall

depends on the direction of travel of Flakey; in this case, it is at the left-hand end, and is indicated

by the vertical coordinate system arrow at that end. Note that there is a second patch coordinate

system superimposed here, leftover from the termination of the previously traversed wall. The

relative orientation of the patches indicates the approximate angle for Flakey to turn upon arriving

at the new wall. (The next wall, the wall to the right of the current one, is too far ahead to be

visible in this picture.)

in a region in which no reasonable candidate could be found when the artifact was not

obscured.

Flakey will not necessarily become lost in the event that it loses track of a wall. Flakey's

estimate of the position of the next wall will remain reasonably accurate, even when the
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previous wall is lost. Since the vertex-�nding routines are more tolerant than their wall-

registration counterparts, the new wall can often be registered and Flakey's estimate of

its position adjusted. The vertex position will still be inaccurate, as it depends on the

estimated position of the previous wall. After registering the current wall, however, the

next vertex can be reliably positioned. Thus, if Flakey can recover two consecutive walls,

it will be completely registered again. On the other hand, should Flakey become very lost,

it must plan to reacquire its position estimate. General reacquisition of position can be a

di�cult and time-consuming task, since the robot must look for and recognize landmarks,

and decide if a particular con�guration of landmarks corresponds to a unique location within

the map. The SRI group is currently working on the reacquisition problem, but was not

able to give Flakey this ability for the competition.

4.2.3 Position correction: Analysis

CARMEL's vision-based triangulation algorithm was not used for the competition because

of last minute changes to the code (which produced incompatibilities with the position-

correction code). This did not cause any run-time problems for CARMEL because its plan-

ning code was designed to be robust to dead-reckoning errors; furthermore the speed with

which CARMEL completed the stages did not allow large positional errors to accumulate.

In contrast, Flakey relied extensively on its position correction mechanism to track its

position in the arena. Flakey's ability to recover walls and rerecognize poles that it had

discovered previously jointly demonstrated that the use of relative landmarks (here, walls

and wall junctions) for position correction was successful. (Flakey did encounter some

positional di�culties near the end of its Stage 2 run, an issue that is further explored in the

next section.) The cost of this approach, however, was the need to stick close to the walls of

the perimeter. This requirement greatly slowed down Flakey's exploration and pole-visiting

activities.

The di�erent approaches taken by the two teams towards position correction illustrate

a fundamental trade-o� between generality and robustness. As noted above, the lack of

absolute reference points in the environment meant that Flakey would have been unable to

correct its position should its estimate of its position have become extremely inaccurate.

Even with absolute references, Flakey's lack of long-range sensing could have made position

adjustment very time consuming. The Michigan team's approach based on long-range

sensing of absolute reference points is certainly better in domains where it can be applied.

5 Issues in Planning

There were two major planning tasks in Stages 2 and 3. The �rst was to explore the

arena and visit and map objects (Stage 2). This meant ensuring that the robot \looked"

everywhere for objects and that it picked a visition order. The second planning task was to

go directly to three of the objects found in Stage 2 and return home (Stage 3). These two

tasks will be studied in this section.
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5.1 Exploration Strategies

To be able to �nd all of the objects, the robots would need to explore the entire ring, perhaps

redundantly. There was no prior information about object locations, requiring a general

and thorough exploration methodology. There was a 20-minute time limit on �nding all ten

objects.

5.1.1 Exploration strategies: CARMEL

CARMEL's vision system could identify objects from a 12-meter distance, and experimen-

tation showed that it was very robust and accurate in determining objects' locations. Such

a large visual range greatly reduced the amount of motion around the ring required to cover

the area visually. From a single location near the center of the ring, it was possible to see all

ten of the objects, although it was possible for some objects to occlude others. Therefore,

CARMEL was programmed to simply take a 180-degree vision sweep at the start of the

run, and move across the center of the ring to a point slightly past the center, and take a

full 360-degree sweep. In the event that these two vision sweeps did not see all the objects,

four additional vision locations were de�ned to form a square roughly 8 meters on a side,

centered within the ring. At each of these locations, another 360-degree vision sweep could

be done, if needed. In actual competition, only the �rst two vision sensing locations were

needed. The vision locations used for Stage 2 are illustrated in Figure 17

By taking two visual sweeps of the entire ring relatively early in Stage 2, the object map

created was reasonably accurate and was known to not contain any large dead reckoning

errors. This would help in visiting the objects in Stage 2 and in Stage 3, and in dealing with

dead reckoning errors that developed through the course of the exploration. The absolute

positioning algorithm compares the objects in the map against the objects from a camera

sweep and recalculates CARMEL's location in the ring, so it is important that the map be

as accurate as possible (as was stated in Section 4.2.1 , the absolute position algorithm was

not used during the actual competition).

Once seen, objects were visited using a simple point-to-point strategy | the robot

simply went to the next closest unvisited object. Using a planner to determine an optimal

visitation order would have been time consuming and unnecessarily complex (the travelling

salesperson problem), since any two points were never terribly far away.

When visiting each object, CARMEL moved to a point slightly in front of the object and

then took another image to update the object's position and heading relative to the robot.

This relative distance and heading were used, rather than the global map, to calculate a �nal

approach vector. This ensured that CARMEL approached the object within the required

two-robot-diameter distance.

The planning system had to �eld a number of potential errors from subsystems in

Stage 2. There are two major causes of errors that the planner has to deal with: 1) Errors

in movement, whereby the robot could not move to the requested position; and 2) Errors

in object location, whereby the vision system could not reacquire an object once it had

approached it. There are two types of movement errors: 1) Traps (concave formations
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Figure 17: CARMEL has a vision range of approximately 12 meters, as illustrated in (a), which

enables the robot to see the entire ring (approximately 21 meters in diameter) from a central location.

Because one pole may block CARMEL's view of another pole, one view is not necessarily su�cient

to see all ten poles, and a contingency plan of multiple locations is called for. CARMEL was given

a series of six vision locations, illustrated in (b). Due to dead-reckoning errors that accumulate as

CARMEL moves, the �rst vision location contains the most accurate information; however, it covers

less than half of the ring. In the actual competition, only the �rst two vision locations were needed.

of obstacles) which are detected automatically by VFH; and 2) Failure to attain the goal

location, because, for example, the goal is surrounded by obstacles. Traps are recovered

from by using a global path planner to plot a set of goal points that will lead the robot out

of the trap and to the goal location. Failure to attain the goal location errors are handled

di�erently depending on the situation. In some cases, CARMEL may be close enough that

it doesn't matter if it attained the goal location. If CARMEL is not close enough, the

planning system may decide to to try again or may choose a new goal location.

Recovery from errors in object location are handled in several ways. First, CARMEL

can rotate its camera left and right in an ever-widening arc, searching for the object. If this

fails, the planner assumes that CARMEL is too close to the object to detect it (the vision

system has a minimum range of one meter) and so it tells CARMEL to back up. If this

fails, the object is assumed to be occluded and the planner chooses a new goal location on

the opposite side of the object and starts the veri�cation process over again.

At the end of the run, a map of the objects was saved to a �le to be used in Stage 3.

The current map was also saved at intervals during the run in the event of some unforeseen

problem or in the event that CARMEL was unable to complete Stage 2 in the 20-minute
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time period.

5.1.2 Exploration strategies: Flakey

Given the limited range of Flakey's sensors, the search for objects in a large-scale space

requires a physical traversal of the space to ensure complete coverage. For the competition,

it was necessary that Flakey traverse the entire area of the arena, modulo its 4-meter wide

perceptual �eld (cf. Figure 13). To this end, Flakey employed purposeful behaviors built out

of the low-level reactive behaviors, and tasks built out of purposeful and reactive behaviors.

The architecture shown in Figure 4 illustrates Flakey's hierarchy.

Reactive behaviors, such as Avoid-Obstacles, provide a reliable basis for safe move-

ment. Purposeful behaviors provide more directed activity by taking explicit goals into

account. While reactive behaviors respond to perceptual features, purposeful behaviors

repond to abstract features in the local percpetual space called artifacts. Typically, an arti-

fact indicates a goal to achieve or maintain a certain relation between itself and the robot.

Artifacts used for the competition include control-points, for achieving (x; y) positions with

a given heading and velocity; lanes, for following corridor-like strips of space with fuzzy

markings; and objects such as poles to be visited. Once an artifact is introduced in the lo-

cal perceptual space, its position with respect to Flakey is continuously updated as Flakey

moves. A purposeful behavior is built by writing a fuzzy rule set whose goal is to keep Flakey

in a certain relation with the artifact. This rule set is typically combined with other rule

sets (or sub-behaviors) that take care of other, concurrent goals (e.g., avoid obstacles along

the way). Combination of concurrent goals, or behavior blending, is performed using the

methods of fuzzy logic [14]. Figure 18 shows the result of blending a wall-following behav-

ior with an obstacle-avoidance behavior (here, Keep-Off). Context-dependent blending

of di�erent behaviors allows Flakey to exhibit reliable operation in unstructured dynamic

environments.

Coordinating purposeful activities to accomplish complicated goals requires yet another

level of control. Tasks provide a simple means of combining purposeful behaviors with

perceptual events (e.g., a landmark has been reached, or a pole candidate recognized). In

essence, a task is a �nite-state machine whose transitions are conditional on perceptual

events. A state transition can activate a behavior or another task as a side e�ect. Hence,

tasks provide a simple robot programming language that uses both reactive and purposeful

behaviors as primitive operators and state transitions as the main control mechanism. Tasks

are organized in a stack where the topmost task is in control; when a task completes, it

pops itself and new topmost task assumes control.

Flakey's exploration strategy for the competition is de�ned by the task Explore shown

in Figure 19. Flakey is started along a wall and given a rough estimate of its original position.

To begin, Flakey activates the Follow-Perimeter behavior to commence an initial trip

around the ring and immediately enters the 1st-round state of the task. The purpose of

this circuit is to allow Flakey to detect poles located near the perimeter of the ring. There

were three main reasons for chosing a strategy based on perimeter following: �rst, this

allows Flakey to e�ectively use the walls of the arena as primary registration cues; second,

40



(a)

(b)

(a)

Activation Turn Accelleration< > - +

OVERALL

(b)

Activation Turn Accelleration< > - +

OVERALL

Figure 18: Flakey uses fuzzy rules to blend reactivity with purposeful action. In the top �gure,

Flakey moves from right to left. At location (a), an obstacle has been detected, and the preferences of

Keep-Off are dominating; later, at location (b), the path is clear, and the goal-oriented preferences

expressed by Follow re-gain importance. The bars show the level of activation and the preferred

controls for each behavior, and the result of the blending.

the available prior information about the shape of the ring could be integrated; third, this

provides a cheap indicator of the current state of coverage of the arena. Flakey continuously

monitors the distance to a wall to ensure safe registration during the Follow-Perimeter

behavior: if it �nds itself too far from the wall (e.g., after having checked a pole far away,

or avoided a large cluster of obstacles), it immediately pushes a Recover-Wall task onto

the task stack, making it the currently active task.

While proceeding around the perimeter, Flakey monitors its sonar input for pole can-
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initPushed

foray−locationelse

starting−point

possible−pole
push(CHECK−POLE) wall−too−far

push(RECOVER−WALL)

push(DO−FORAY)

FOLLOW−PERIMETER

1st round 2nd round

else

possible−pole
push(CHECK−POLE)

wall−too−far
push(RECOVER−WALL)

Figure 19: The tasks used by Flakey are �nite-state machines. The Explore task, is illustrated

here; state transitions are labelled by the triggering perceptual event (lower case), and by the

behavior to be activated or task to be pushed (upper case).

didates. When a candidate is found, Flakey pushes a Check-Pole task to execute the

sequence of actions involved in verifying a pole candidate using the structured-light sensor:

i) turn to face the pole candidate; ii) move close enough for the laser to hit the pole; iii)

turn slightly to ensure that the pole is in the visual �eld; and iv) resume previous task.

Upon veri�cation of a pole using structured light data, the pole is registered in the tolerant

global map, using the local coordinates of the pole in the current patch.

After completing an initial circuit of the ring, Flakey enters the 2nd-round state of the

Explore task. Flakey proceeds with a second circuit but this time makes forays into

the interior from three predetermined walls. A foray consists of three connected corridors

called lanes. The width and length of these lanes are �xed (about 3 by 7 meters), but their

con�nement is elastic: by using its fuzzy rules, Flakey tries to stay within the lanes but will

deviate from them to avoid obstacles.

Figure 20 depicts the route traced by Flakey during a simulated run of Stage 2. Here,

Flakey travelled in the counter-clockwise direction, beginning along the top wall heading

left. The e�ects of various Check-Pole maneuvers are visible near several poles that were

classi�ed as pole candidates by the sonar routines. After having traversed the perimeter

once, Flakey executed a foray from the top wall, during which it discovered two new poles.

The actual foray was much longer than the one originally planned (the corridor marked by

the dashed lines) due to the large cluster of boxes encountered during the phase of the foray

running parallel to the wall. The simulator includes noise in both movement and sensing

comparable to that experienced by the real robot.

5.1.3 Exploration strategies: Analysis

It is di�cult to compare exploration strategies on their own, because they are closely tied

to the sensing capabilities of the robots. With its excellent long-range object recognition
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Figure 20: The dotted path traces the movements of Flakey during a partial run of Stage 2 for a

simulated competition arena. Flakey started from the middle of the top wall heading left. Here,

it has �nished searching the perimeter of the arena and has just returned from its �rst foray (the

dashed rectangle in the picture). Check-Pole maneuvers are visible near poles.

capabilities, CARMEL did not have to use a very elaborate exploration strategy. Flakey, on

the other hand, was burdened with short-range sensing and so it had to do more exploration.

Flakey's major exploration problems arose while it made its �nal foray from a wall to

check a pole. During this foray, Flakey became confused about its position, causing it to

misidentify previously found poles as new poles. And although Flakey did manage to �nd

a new pole, the pole was mapped to a fairly inaccurate position. The localization problems

arose because Flakey began its foray before registering the wall. Flakey's expectation of

where the wall should be located (based on a priori knowledge) was fairly inaccurate; this

discrepancy would have been corrected when the wall was registered. Allowing forays to be

made before registration of the wall was a tactical mistake in the SRI design, and points to
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the need for developing more general self-location strategies.

The Michigan team's use of long-range sensing easily enabled CARMEL to �nd all ten

poles within the allotted 20-minute search period. In contrast, the physical exploration

executed by Flakey was very time-consuming. In the end, Flakey found and correctly regis-

tered only eight of the ten poles before time expired. Certainly, the Michigan approach was

superior given the conditions of the competition environment. In particular, Michigan took

full advantage of the fact that objects would be visible above all obstacles. Since Flakey's

method was not based on any such assumptions, it was less e�cient; however, Flakey's

exploration method could be employed in more realistic environments, where objects may

be occluded.

5.2 Directed Search Strategies

In Stage 3 of the competition the robots were given three poles that they needed to visit in

order and then return to a home position. This stage was timed, with the robots receiving

points based on their time with respect to the other robots.

5.2.1 Directed search strategies: CARMEL

Since CARMEL had saved a map of the objects from the Stage 2 run, Stage 3 was straight-

forward. CARMEL executed a simple loop, moving to each object in turn, and verifying

and identifying it as in Stage 2. Speed was not an issue here: CARMEL would probably

be able to move faster than the other robots in the competition. The primary concern

was again dead-reckoning errors; Dead-reckoning errors from Stage 2 would result in an

imperfect map, while dead-reckoning errors in Stage 3 would result in moving to the wrong

location.

However, in practice, neither of these caused much problem. Since objects were iden-

ti�ed and placed in the map very early in Stage 2, dead-reckoning errors had little e�ect

on the map. Errors accumulated while moving in Stage 3 were taken care of by the same

object veri�cation techniques used in Stage 2. That is, if CARMEL's dead-reckoning had

accumulated enough error so that its location relative to an object was o� when it went to

visit the object, CARMEL would fall back upon contingency planning in an e�ort to locate

the object. These mechanisms were included in the code, but in the actual competition,

CARMEL's Stage 3 run was so fast (3 minutes) that dead-reckoning errors never accumu-

lated to any large extent. The recovery behavior was observed by the crowd, however, on

one of CARMEL's two false starts. In the false starts, a wrong initial orientation was en-

tered at the beginning of the run. Therefore, CARMEL headed about 37 degrees away from

the location of the �rst object, and fell into recovery mode to try to locate it, which it did.

The judges subsequently gave CARMEL another chance when the error was discovered.
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5.2.2 Directed search strategies: Flakey

The SRI strategy for visiting poles necessarily relied on perimeter-following, given that

Flakey registered poles with respect to local coordinate systems based on perimeter walls.

Visiting an object registered with respect to a wall W involved three steps: 1) determine

the direction of the shortest perimeter path to W (either clockwise or counter-clockwise);

2) follow the perimeter in that direction until W is encountered; and 3) use dead-reckoning

within the coordinate system of W to move close enough to the pole for structured-light

veri�cation.

After veri�cation, Flakey would recover the wall of the coordinate system and repeat

the process for the next pole. The starting location was registered in the coordinate system

of the initial wall as an object named home, thus allowing Flakey to employ the same basic

strategy for returning home after having visited the third pole.

5.2.3 Directed search strategies: Analysis

Analysis of the directed search strategies cannot be decoupled from the mapping approach

used by each robot. Flakey's strategy of registering objects and itself to walls meant that

it had to traverse the perimeter of the arena to reach each object. Though this was an

expensive price to pay in terms of execution time, the outcome was the reliable registration

of the poles in an environment far larger than Flakey's perceptual capabilities. In fact,

Flakey's locative abilities were accurate enough to position it right in front of the given pole

before verifying it with the structured light. CARMEL, with its global map, could quickly

move across the arena, directly to the target objects.

One di�erence in directed search strategies was in the �nal, homing move. Like many

other teams, the Michigan team placed an eleventh pole at the home position. CARMEL

used this pole to allow for correction of any dead-reckoning errors that may have accumu-

lated during the run. Flakey needed no such modi�cation to the environment, but was able

to treat the home location in the same manner as other positions of interest (such as foray

positions or pole locations) without having to add a pole to mark the position.

6 Stage-by-Stage comparison of performance

Previous discussion has focussed on general issues of robot navigation that needed to be

addressed by each team. This section looks at how design decisions of the teams related to

the actual performances of both CARMEL and Flakey in each of the three stages of the

competition.

6.1 Stage 1: Roaming in a Semi-Structured Environment

Flakey �nished second in Stage 1 and CARMEL �nished third. Flakey's success was at-

tributed to the use of fuzzy rules that resulted in pleasing smoothness of movement. Even
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given Flakey's blind spots in its sonar arrangement, its reactivity was completely reliable

in avoiding obstacles and judges. In Stage 1 it moved at a top speed of about 200 mm/sec.

Using VFH, CARMEL had even smoother movement than Flakey and moved at much

higher speeds. Where CARMEL lost points was its di�culty coping with being trapped

and cornered by the judges. In order to ensure adequate coverage of the arena, the running

speed of CARMEL had been set at 300 mm/sec, a good speed for avoiding most moving

obstacles, but a di�cult speed in which to react to quickly converging judges who were

intent on trapping CARMEL. Thus, CARMEL brushed two obstacles and one judge.

6.2 Stage 2: Exploring a Semi-Structured Environment

CARMEL �nished �rst in Stage 2 �nding and visiting all ten objects in less than ten

minutes. The second place �nisher in Stage 2 was Buzz from Georgia Tech, which found

nine of the ten objects in 20 minutes. Flakey �nished third �nding and visiting eight of the

ten objects in the allotted 20 minutes. In addition, the SRI team earned kudos from the

judges and audience for not attaching tags to their poles as most other teams, including

Michigan, had done.

CARMEL's impressive performance (it was the only robot that didn't use the full 20

minutes) was due to its long-range sensing abilities and high-speed obstacle avoidance. This

goes to show that good sensing can allow for simple exploration strategies, as long as the

exploration strategy is designed to take advantage of the sensing capabilities of the robot.

Flakey was able to visit only eight of the ten objects in Stage 2, and also incorrectly

labelled a previously visited pole as a new pole. It should be noted that neither of these

problems indicates a fault of Flakey's perceptual routines, which worked perfectly. The

sonar sensors classi�ed only one non-pole object (a box corner) as a candidate pole. This

candidate pole was then eliminated from the LPS by the results of the structured light

procedure. The two missed poles were not found because of Flakey's exploration routines

did not account for objects that were too close to be sensed. Flakey was in the neighborhood

of these objects, but never realized it. The dually labelled pole was a result of the decision

to use multiple local maps rather than one global map; the pole was placed in two separate

maps which were never compared.

6.3 Stage 3: Directed Search

CARMEL easily won Stage 3, �nding all three objects and returning home in about three

minutes, beating second place TJ from IBM by about 30 seconds (it should be noted that TJ

competed in a half-size ring for smaller robots). Odysseus from Carnegie Mellon University

�nished third (Odysseus also competed in the smaller ring) and SRI �nished fourth in

Stage 3, visiting all three objects and returning home in about 11 minutes.

CARMEL's success in Stage 3 was a combination of its accurate global map produced

in Stage 2 and its high-speed obstacle-avoidance abilities. CARMEL's simple visitation

strategy worked well. Because the map was relatively accurate and because CARMEL

moved directly to the objects and dead-reckoning errors did not have a chance to accumulate,
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the contingency plans were invoked only once. When CARMEL approached the second

object, the pole was not where CARMEL expected. CARMEL looked to the right and was

able to identify the pole.

While CARMEL was able to move directly to each pole, Flakey had to move about the

perimeter of the ring to register each pole to the speci�c wall in the appropriate patch, which

was a much more time-consuming process. In fact, in the actual competition, this problem

was magni�ed because boxes had been moved to the walls in between Stage 2 and Stage 3.

Additionally, visiting the sequence of designated poles required traversal of almost half of

the perimeter in each case. Because of Flakey's reliance on perimeter-following, the wide

separation of poles a�ected the robot's travel time more so than for robots that navigated

directly between poles. Flakey's local maps from Stage 2 were also very accurate, so that

once Flakey located the correct patch by perimeter following, it was able to move directly

to the pole. Flakey's contingency routines, to �nd poles that were not where expected, were

never invoked.

7 Architectural Di�erences

The features described in the previous sections are summarized in Table 1. It is interest-

ing to try to compare the two system architectures, which arose out of di�erent research

programs. In less than a month, the SRI team was able to write and debug half a dozen

complex movement routines that integrated perception and action in the service of multiple

simultaneous goals, building on existing research in o�ce navigation. CARMEL's program

was designed speci�cally for the competition, making use of the existing low-level VFH and

EERUF routines. All other modules (e.g. planning, vision, and triangulation) were written

speci�cally with the competition in mind; the team spent approximately �ve months on

this.

In terms of overall design, it is di�cult to compare the relative merit of the two architec-

tures because the approaches to solving the problem were so di�erent. Flakey's distributed

control scheme allows various modules to run in parallel, so that (for example) self localiza-

tion with respect to landmarks occurs continuously as Flakey moves towards a goal location

or searches for poles. However, the distributed design leads to behavior that is more dif-

�cult to predict and debug than that of CARMEL's top-down approach, in which all the

perception and goal actions are under sequential, hierarchical control.

While Michigan was the winner of the competition, it is not clear that their system

can be easily extended to other domains. Certainly, the obstacle-avoidance routines are

necessary in any domain and are widely applicable, but CARMEL's reliance on a global

coordinate system and tagged objects restricts it to engineered environments that can be

accurately surveyed. Also, CARMEL's simple exploration strategies would be naive in an

environment were objects can be occluded. CARMEL's keys to victory were fast, graceful

obstacle avoidance and fast, accurate vision algorithms, not cognitive smarts.

Flakey, on the other hand, while moving more slowly and possessing less accurate and

more local sensing, had to rely on a smart exploration strategy and constant position cor-
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Feature CARMEL Flakey

Sensors 24 sonars around perimeter 12 sonars at front, back, sides

8 touch-sensitive bumpers

grayscale CCD camera structured-light sensor

Software Structure hierarchical modules parallel behaviors

Moving

obstacle avoidance EERUF and VFH fuzzy rules and LPS

roaming 8-point star composite behaviors:

wander, avoid-obstacles,

go-forward

Object recognition tagged poles (bar codes) type recognition of poles

(no tags added)

long-range vision two-part identi�cation:

sonar identi�es candidates

structured-light sensor

recognizes poles

Mapping

map design global Cartesian map patches and tolerant global map

position correction three-object triangulation registration to walls

Planning

exploration 6 prede�ned vision locations traversal of perimeter and

forays into center of arena

directed search proceed to location follow walls till appropriate patch is

indicated on global map reached; make foray into patch

Table 1: CARMEL and Flakey di�er on a number of factors mentioned in previous sections of this

paper. These features are listed above for comparison.

rection. One of the key research ideas behind Flakey is that natural (i.e., non-engineered)

landmarks are su�cient if the right map representation is used, and it was gratifying to see

this work in a new environment. Still, Flakey could be more e�cient in navigating open

spaces if it would incoporate more global geometric information.

The fact that CARMEL, which is sensing-rich and cognitively-poor and Flakey, which is

sensing-poor and cognitively-rich, came in as the top two robots in the competition clearly

shows that fundamental tradeo�s can be made in engineering mobile robots. Complex

sensors can allow for simple planning; simple sensing requires complex planning. In no

sense is either robot more complex than the other, it is just that the complexity lies in

di�erent places.
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8 Similarities in Approach

Both CARMEL and Flakey must be considered unquali�ed successes, having bested a dozen

or so other entries in a nationwide competition. Even though the two approaches had many

di�erences, there were signi�cant similarities between the two robots that led both of them

to be successful.

8.1 On-board processing

Both teams did all of their processing on-board the robot, without resorting to radio links.

Michigan did this by design; SRI did this after discovering their radio link would not

work properly in the arena. Almost every team that used a radio or video link encountered

enormous problems in interference. These teams also ran notably slower than did CARMEL

and SRI due to time delays in transmitting information and the extra time required to clean

up the transmitted signal. Both CARMEL and SRI showed that keeping processing close

to sensing is a winning strategy.

8.2 Work on the basics

For any mobile robot, the basics are being able to move around in the world and not bump

into anything. Both Michigan and SRI invested substantial e�ort into obstacle avoidance

and it showed. Almost no other competitors could move as quickly or as smoothly as

CARMEL and Flakey, while still avoiding both stationary and moving obstacles. A mobile

robot that cannot e�ectively move without hitting things is not a mobile robot.

8.3 Simulations can help

Both Michigan and SRI developed simulations of the competition and of their robot to

help in developing and debugging code. For Michigan an X-Windows planning simulator

allowed for development of higher levels of code to proceed while other levels, such as

obstacle avoidance and vision were still being perfected. The planning system could be

tested under many di�erent scenarios without taking up valuable time on the real robot.

SRI also had an emulator that connected to their high-level computers in place of Flakey.

SRI had the capability to make \movies" of Flakey's behavior and then play them back for

debugging. A movie includes all of the sensory information and motor actions that took

place over a span of time, saved in a �le as a sequence of packets. This �le can be replayed

as if it were the actual robot | similar to virtual reality. Unlike virtual reality, however,

the motion of the robot during movie playback cannot be inuenced; but the SRI team has

found the movie technique very useful for debugging perceptual routines and actions, since

they can move quickly to a point at which there is a problem, and single-step from there.

Of course, in no case can a simulator replace an actual robot in an actual environment for

�nal testing and debugging.
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8.4 Experienced robots

Both CARMEL and Flakey are relatively old, both being around more than �ve years. There

has been plenty of time for researchers at Michigan and SRI to develop stable libraries of

communication and control routines as well as learn the ideosyncracies of their robots. It

can take many years for a mobile robot to become an \everyday" research resource on which

more complicated tasks can be implemented.

8.5 Geometric path-planning

It is surprising that neither team used any geometric planning for navigation around ob-

stacles to a goal point, although this is a large area of robotics research [9]. Instead, they

relied on the simple strategy of heading towards the goal and using reactive behavior to

avoid obstacles, with very simple methods for getting out of cul-de-sac situations. Geomet-

ric planning requires some sophistication in perception and mapping of obstacles, and can

be di�cult to perform in real time. The large openings around obstacles in the competition

made it easy to pursue simpler strategies, and we speculate that in other domains geometric

planning will also play a minor role in navigation.

9 Conclusion

The AAAI Robot Competition allowed for direct comparison between competing techniques

in accomplishing the same task in the same environment. This paper is meant to show how

two winning robots approached the tasks and dealt with the issues that arose. There

were many other robots with many other approaches and the experience of a head-to-head

competition was invaluable. While substantial di�erences existed between robots, those

that won had many characteristics in common.
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