
Recognizing the Plans of Screen Reader Users

Marcus J. Huber
Intelligent Reasoning Systems

4976 Lassen Drive
Oceanside, California, 92506

marcush@marcush.net

Richard Simpson
Dept of Rehabilitation Science and Technology

University of Pittsburgh
Forbes Tower, Suite 5044

Pittsburgh, PA 15260
ris20@pitt.edu

Abstract

Less than half of the individuals of working age with visual
impairments are employed, and a significant barrier to em-
ployment is effective computer access. Some of the screen
reader applications offer some help but have limited con-
text sensitivity and are of limited use in applications with
dynamic “interfaces” like web pages. Sophisticated screen
readers provide aid through application-specific scripts but
their full potential is reduced by a users’ limited awareness
of the scripts and the difficulty in programming and modify-
ing scripts. Technologies such as plan recognition and the au-
tomation and optimization of script generation that provide a
more adaptive interface for the user will significantly improve
computer accessibility to the visually impaired. In this paper,
we discuss the addition of probabilistic plan recognition ca-
pabilities and supporting framework to an industry leading
screen reader to improve accessibility of computers to the vi-
sually impaired at work and at home. We discuss both the un-
derlying model-based probabilistic procedural model as well
as the system developed.

Introduction
Effective access to computers is becoming increasingly cru-
cial for academic and vocational success. It is predicted that
60 percent of U.S. jobs will require computer skills within
the next five years (U.S. Department of Education 1996).
Currently, less than half of the individuals of working age
with visual impairments are employed (McNeil 1993), and
a significant barrier to employment is effective computer ac-
cess. In particular, manipulating information on the WWW,
our application focus, is rapidly becoming a crucial com-
puter skill.

Screen readers, applications that audibilize the text on
computer screens, provide some support. For example, a
visually impaired user must hit the downarrow or tab keys
to move to a subsequent line of text, which is audibilized
(read aloud to the user via text to speech technology) as the
user performs the navigation. When web browsing, another
keystroke moves from link to link, audibilizing the link con-
tents (text and URL). However, manually finding relevant
information and links on web pages can involve dozens, if
not hundreds, of manual navigation actions, is very difficult
to repeat, and takes substantial time to wait for text to be
read.

Scripts can automate such navigation tasks, but the few
screen readers that support scripts are still limited in a num-
ber of ways. For example, users need to learn that scripts
exist before they can invoke them (usually with a key combi-
nation that’s bound to a script), and there are different scripts
associated with different applications (e.g., one set of scripts
for a particular word processor, another set of scripts for
a different word processor (with some scripts appliable to
both), another set of scripts for a particular spreadsheet, ...).
Knowing which scripts are available and how to invoke them
presents a steep learning curve to new and even intermediate
users.

Often the user would be best suited with a fully or par-
tially customized script. Writing scripts is typically a very
difficult prospect for most users, and any development that
makes generating or customizing scripts can greatly benefit
a user. Screen readers at the time our project started did not
provide any mechanism for users to easily create new scripts
nor to easily modify them, relying upon standard editing and
debugging paradigms that aren’t tailored to the visually im-
paired.

Futhermore, a fundamental flaw in all screen readers is
that they generate their output based strictly upon an appli-
cation’s visual display without any regard to the current con-
text of the application (Raman 1997). Given that browser
applications change little or not at all while the underlying
data – the web pages that are the real focus of the user – can
change redically from web page to web page, the current
screen reader functionality and scripts provide little more
than a starting point to the user. Failing to appreciate the
state of an application and the user’s goals causes screen
readers to 1) provide unnecessary information, 2) overlook
relevant connections between output in different parts of the
display, and 3) fail to emphasize especially important data.

The research performed and the software developed dur-
ing this project has been focused on a sophisticated screen
reader with scripting capability called JAWS 1. First, JAWS
has been extended to simplify and speed script generation.
This has been done by developing a macro recorder, de-
veloping algorithms to reason about the goal of the set of
macro-recorded actions, and developing algorithms that rea-

1Freedom Scientific Blind/Low Vision Group, 11800 31st
Court North, St. Petersburg, Florida 33716.

son about how to produce a script that is much shorter and
more efficient than that produced using a typical simple
macro recorder scheme. In addition, we have developed
the infrastructure required to recognize existing scripts to
identify when the user is manually performing a task for
which a script is available. Performing this detection and
subsequently notifying the user of this fact has the potential
to save the user tremendous time. This same infrastructure
also supports using existing scripts as the basis for recogniz-
ing scripts similar to the user’s particular needs that can be
used with minimal tailoring, further simplifying and speed-
ing script generation. In summary, what this means to the
end user is 1) that they will be made aware of the existance of
the scripts that they are performing manually and instructed
on how to execute the matching script, 2) that they will be al-
lowed to make errors during script generation and web page
navigation and still be able to constructively perform those
tasks, 3) that they will find it much easier to generate new
scripts that are compact and efficient, and 4) that they will
be able tailor existing scripts significantly easier.

Enhancing A Screen Reader: Overview
One capability that provides a significant improvement in
screen reader technologies is the ability to identify the user’s
intentions as the user is performing a task. This capability,
called plan recognition, can provides assistance to the user
as well as to provide useful contextual information to our
script generation and optimization extensions discussed be-
low. Our plan recognition mechanism is based on the AS-
PRN (Automated Synthesis of Plan Recognition Networks)
system’s probabilistic modeling theories and implementa-
tion (Huber 1996; Huber, Durfee, & Wellman 1994). AS-
PRN takes procedures as its input, in this case JAWS scripts,
and produces specially constructed probabilistic models that
we call Plan Recognition Networks (PRNs, a particular in-
stantiation of belief networks) that models those procedures.
Because PRN computations are based on probabilistic mod-
els and relationships, belief networks are well suited for
dealing with uncertain, conflicting, or extraneous informa-
tion, something often encountered in user interfaces. Other
plan recognition algorithms using probabilistic representa-
tions, for example ((Kaminka, Pynadath, & Tambe 2002;
Paek & Horvitz 2000; Goldman, Geib, & Miller 1999)),
might be applicable to screen readers, but only ASPRN is
based on the directly executable plan representations that
are crucial to this domain. Furthermore, users will almost
certainly deviate from standard task templates whether it be
intentionally or unintentionally, something non-probabilistic
representation schemes (e.g., (Broverman, Huff, & Lesser
1987; Vilain 1990; Goodman & Litman 1990)) cannot deal
with in a natural or pragmatic way.

Our system’s design is shown in Figure 1. All of the
components illustrated in Figure 1 have been implemented
and are operational. The JAWS screen reader is central to
all of our current work, providing a good basis of exist-
ing functionality and internal representations for improving
computer access to the visually impaired.

The Script Library maintains all of JAWS’ application-
specific scripts, each of which accomplishes a small, spe-

cific, task. The commercially distributed version of JAWS
comes with a large corpus of scripts. These scripts are use-
ful only for using applications like Internet Explorer in ways
that are not content specific. The pre-existing JAWS scripts
were therefore of limited use for web access. Early feed-
back from visually-impaired clients of The Lighthouse of
Houston2 suggested that we initially concentrate on several
tasks that the visually impaired frequently perform with web
browsers (e.g., retrieving a weather forecast, online purchas-
ing, checking stock ticker values) rather than anything job-
specific. With this in mind, we developed scripts for per-
forming each of these tasks and also a number of subscripts
that perform common rudimentary functions. The latter of
these, the low-level subscripts, ultimately play an important
role in distinguishing between scripts when multiple strate-
gies can be used interchangeably within a single high-level
task and when multiple high-level tasks are differentiated
based on which strategies are used.

Before a user interacts with the system, we present the
scripts in the Script Library to ASPRN for convertion into
PRNs. The resulting PRN files are collected and placed in
what is called the PRN Library.

The Script Generation Interface (SGI) takes a macro-
recorded sequence of user actions (from the Macro
Recorder) and creates an optimized script which is then
added to the Script library and passed through ASPRN to
create a PRN to add to the PRN Library. In addition to script
optimization, the SGI presents an interface3 to the user so
that the pre- and post-optimized script can be reviewed and
modified by the user in a number of ways before being ac-
cepted or rejected.

The Plan Recognition Engine (PRE) accesses the PRNs in
the PRN Library and uses these probabilistic models in com-
bination with information about the user actions and context
to determine whether and how best to assist the user. At the
current time, the PRE is used primarily by the SGI during
macro-recorded script optimization.

Constructing Belief Networks
Structure
The execution flow that ASPRN follows is shown in Fig-
ure 2. ASPRN first parses a JAWS script file, possibly con-
taining many JAWS scripts and function definitions (the for-
mer possibly invocable by users, the latter only accessible
at the programming level), into a generic internal procedural
model. This internal object-oriented representation provides
a reusable framework into which to parse procedural con-
structs ubiquitous to programming languages:

• Simple sequences of actions

• Hierarchical invocation (e.g., subfunctions, subgoals)

• Conditional execution (e.g., IF-THEN-ELIF-ELSE in
programming and scripting languages like JAWS, AND
and OR constructs in AI/agent languages)

2The Lighthouse of Houston, 3602 West Dallas, Houston,
Texas, 77019.

3Tested and evaluated to make sure it is accessible to the visu-
ally impaired

JAWS Screen
Reader

Plan Recognition
Engine

Plan Recognition
Network Library

Script Generation
Interface

Web
Pages

Script
Library ASPRN

Observation of
User Actions

Updated
Probability

Values

Events/
Actions/

Keystrokes

HTML content/
type/locations

Ranked
Scripts

Optimized Scripts

Plan Recognition NetworksScripts

Actions
Scripts

Macro
Recorder

Scripts

"Pipe"

Figure 1: Architectural diagram of our enhanced screen reader system.

Any BIF/DNET-
Compatible
Application

Compute
PRN

Topography

JAWS
Script
File

Internal
Procedure

Representation

Script readWeather
 nextLine()
 enterText()
 followLink()
EndScript

Parse
Scripts

Numberless
PRN

Compute
Conditional
Probabilities

Fully-specified
PRN

Compute
Graph
Layout

Write
BIF/DNET

Format

Figure 2: The ASPRN process of taking a JAWS script and constructing a specially-designed belief network called a Plan
Recognition Network (PRN).

• Iteration (e.g., WHILE and DO loops)

For simple, abstract examples of JAWS instances of the
constructs listed above, see Figure 4(A), (B), (C), and (D),
respectively. The JAWS scripting language is a complex,
fully featured programming language, including all of the
above programming constructs above as well as features
such as declarations and use of constants and variables, pa-
rameters to function, value returns from functions, events,
and nested file inclusion.4

ASPRN computes a PRN topography based on the syntac-
tic nature of the procedures parsed (see below). After this,
the conditional probability values associated with the PRN
instance are computed based on a domain-independent pro-
cedural model. The procedural constructs in JAWS scripts
can be instantiated into PRNs for any possible combination
of chaining, nesting, and hierarchical invocation (except re-
cursion) and results in a coherent probability distribution
over the entire network.

For debugging and analysis purposes, ASPRN next deter-
mines a visual layout for the PRN for when it is loaded into
belief network visualization applications. Finally, ASPRN
writes out the completed PRN into a file (in either BIF or
DNET formats - standard formats for belief network files)
for adding to the PRN Library and subsequent use by the
PRE.

The basic modeling theories, algorithms, and key appli-
cation concepts from the original ASPRN system (Huber
1996; Huber, Durfee, & Wellman 1994) were modified in
a couple places to suit the specifics of the JAWS scripting
language. For example, the agent plan languages modeled
to date allow for multiple possible plans for each subgoal

4Describing all of the details of the JAWS scripting lan-
guage is beyond the scope of this paper, but can be found at
www.freedomscientific.com/fs support/doc scriptfunction.asp.

invocation, unlike JAWS scripts (and most high-level pro-
gramming languages), in which there is a unique function or
macro definition for each call in a script. This resulted in
much simpler PRNs due to the removal of the necessity to
model the one-to-many relationship. Conditional execution
semantics also differed enough between agent languages and
JAWS scripts to warrant a significant modification. In this
case, agent plans contained AND/OR constructs that are not
mutually exclusive as they are in standard IF-THEN-ELSE
styles of conditional execution. In this situation too, the
resulting PRNs are simpler than those for agent-based lan-
guages.

More details of how ASPRN creates belief networks for
the various JAWS script procedural constructs are shown in
Figure 3 and Figure 4. Note again that during PRN construc-
tion, ASPRN composes the individual belief network pieces
built for each script construct into a single fully-connected
belief network. In Figure 4, ovals represent random vari-
ables and arcs represent probabilistic relationships between
variables. Belief network nodes are created in a regular, sys-
tematic way. Each node is associated with a certain seman-
tic type by ASPRN, according to the JAWS script element
that it is modeling. Four semantic types are currently mod-
eled: each script node represents a script, whether that par-
ticular script is being executed; each action node represents
a script action/function, i.e., whether that action has been
performed; an evidence node is associated with each action
node to model the fidelity of the system’s ability to correctly
sense when the action has been performed (typically a do-
main specific relationship); and each condition nodes rep-
resent the boolean expressions of IF-ELIF conditions and
WHILE loops.

Connections between PRN nodes are created in a regular,
systematic way. ASPRN maintains a semantic model of the
arcs between nodes, remembering the reason the link was

Procedure Construct_PRNs {
for each top_level_script {

create_procedure_node top_level_script_name
Map_Procedure top_level_script

}
Calculate_Probabilities

}

Procedure Map_Procedure {
for each construct in procedure {

Map_Construct construct
link_constructs prior_construct construct

}
}

Procedure Map_Construct {Sequence} {
for each construct in sequence {

Map_Construct construct
link_constructs prior_construct construct

}
}

Procedure Map_Construct (IF-ELIF-THEN-ELSE) {
for each branch in construct {

create_condition_node branch_condition_expression
for each construct in the branch {
Map_Construct construct
link_constructs prior_construct construct
link_constructs construct condition_node

}
}

}

Procedure Map_Construct (Iteration) {
create_condition_node loop_continuation_expression
for each construct in loop body {

Map_Construct construct
link_constructs prior_construct construct
link_constructs construct condition_node

}
link_constructs construct construct_after_loop
link_constructs construct_after_loop condition_node

}

Figure 3: Pseudocode for ASPRNs key modeling algo-
rithms.

created between a parent node and a child node. The arc
semantics created by ASPRN for JAWS scripts are parent
script arcs that originate at a script node and terminate at all
nodes directly related to the script, prior action links that
originate at an action node and terminate in a node for the
next executable action(s), evidence links that originate at an
action node and terminate at its evidence node, and condi-
tion links that originate at action nodes that provide evidence
for their truth value and terminate at a condition node.

In all cases, a script node is connected to each of its com-
ponent actions with a link. A link is also created between
action nodes if the actions they represent are consecutive in
a script, with the arc going from the prior action to the poste-
rior action, to model the temporal order of execution. Figure
4(A) illustrates this, showing how a sequence of actions in
a script is converted into a linearly connected construction
of random variables representing the order of the actions in
the sequence. As mentioned above, each script primitive
action also has an associated evidence node that is used to
model the reliability of observations and is typically where
observations are ascribed to during plan recognition. Our
modeling of temporal relationships between actions may be
changed to a 2-step or 3-step temporal model in the future if
it is deemed advantageous.

In Figure 4(B), we illustrate how iteration is modeled. In
this case, the action sequence within the loop is modeled in
isolation. ASPRN then constructs a condition node repre-
senting the loop continuation expression. All of the actions
inside the WHILE loop consitute evidence that the loop ex-
pression is true, so an arc is added from all of the actions
within the loop to this condition node. Furthermore, the first
action just past the loop reflects negatively upon the truth
value of the loop condition (as do the subsequent actions,
but ASPRN does not model this) and an arc is added be-
tween the node for this action and the condition node. The
evidence nodes in this and subsequent models are not shown
to save space.

Figure 4(C) illustrates how JAWS’ conditional branching
is modeled. First, the action sequences for each branch (i.e.,
the IF branch, any ELIF branch, any ELSE branch) is con-
structed in isolation, with the only links created at this point
being to each action node from the parent script and any
prior actions. Because there is a condition expression as-
sociated with each branch, except for the final ELSE action
sequence, a new condition node is created to represent each
of these expressions. A link is then created from each action
in a branch to its respective condition node, reflecting the
truth value of the expression.

JAWS scripts are often nested, with scripts invoking func-
tions and other scripts. Figure 4(D) illustrates how a multi-
level script is modeled. In such a case, the script of function
being invoked is first treated like any other action, with links
created to it from the nodes representing the invoking script,
any prior action, etc., and from it to any condition nodes and
subsequent actions. Then the script node for the invoked
script/function is treated as if it were a top-level script node
and its own script is then constructed, recursively.

Function and script arguments are not modeled within the
belief network topology or probabilities explicitly, but are

maintained as part of the description of each belief network
node for subsequent use when adding user observations as
evidence during the plan recognition process. This repre-
sents a signifant improvement over the ASPRN described
in (Huber, Durfee, & Wellman 1994; Huber & Durfee 1995;
Huber 1996) as it allows for much better fidelity in matching
observations with PRN action nodes.

Probabilities

To specify the probabilities for each PRN, we identified all
classes of combinations of arcs for each node type that might
arise and specified values for each state value for each type
of variable (GOAL, ACTION, CONDITION, and EVIDENCE).
Through careful selection, some trial and error, and quite a
bit of experience applying PRNs to problems, we have deter-
mined a generic set of prior and conditional probabilities that
work well across multiple domains (Huber & Hadley 1997;
Huber & Simpson 2003). The pattern–based approach to
probability determination that we constructed requires a
fairly large number of patterns (32). However, this mecha-
nism significantly reduces the total number of manual prob-
ability assessments required to create fully specified PRNs,
which is its primary purpose. It should be noted that the
probabilities encoded do not represent actual statistical rela-
tionships between domain actions and scripts (e.g., top-level
scripts are given equivalent priors), but the structural and
execution/observation relationships between script compo-
nents. As such, the posteriors produced by the PRNs do not
represent true statistical posteriors (e.g., 0.10 does not rep-
resent a 10% chance of occurrence) but can be evaluated for
relative change and comparing values between nodes.

An ASPRN node’s conditional probability table is deter-
mined by the combination of the node’s own semantics and
the semantics of the arcs incoming to the node. For exam-
ple, an action node with an arc from a parent script node
and a prior action node will have a different probability ta-
ble than an action node with an arc from a parent script node
but no prior action. It will also be different from an action
node with an arc from a parent script node and a prior ac-
tion that’s actually a script node. These patterns, called con-
ditioning cases, are used to specify a probability value for
any variables given a particular set of incoming arcs with
specified parent state values. The conditioning case patterns
represented within ASPRN are an exhaustive list of possi-
ble combinations. These entries coincide with the possible
arc semantics classifications, one entry for each of the four
arc semantic classifications listed above. Each entry α is
a pair, (Ω, Π), where Ω ∈ { DONTCARE, NONE, ONE,
ONEORNONE, ONEORMORE, ALL} is a constraint spec-
ification, and Π ∈ { Inactive, Active, Achieved } ‖ { Not-
Performed, Performed } ‖ { False, True } is a list of parent
state values that must satisfy the entry’s constraint specifi-
cation (for script, action, and condition nodes respectively).
The semantics associated with each possible constraint spec-
ification is given below.

• DONTCARE – Ignore any incoming arcs with this entry’s
semantic classification. I.e., the node is independent with
respect to arcs with this semantics.

• NONE – No arcs with this entry’s semantic classification
may have a parent’s state value specified within Π

• ONE – Only one of the arcs with this entry’s semantic
classification may have a parent’s state value specified
within Π

• ONEORNONE – Either no arc, or only one arc with this
entry’s semantic classification may have a parent’s state
value specified within Π

• ONEORMORE – At least one of the arcs with this entry’s
semantic classification must have a parent’s state value
specified within Π

• ALL – All of the arcs with this entry’s semantic classi-
fication must have a parent’s state value specified within
Π

Table 1 shows an example of a fully specified pattern. The
pattern shown in this figure matches the cases for an action
(not the first action) in a simple sequence of actions where
the parent goal has the state Active and the action immedi-
ately prior to the variable for which this probability is being
specified is either Inactive (it could be a script node) or Not-
Performed (it could be an action node). All incoming arcs
with other semantics are ignored. This probability pattern
does not apply to the first action of a simple sequence due
to the constraint specification that one (not zero, not more
than one) incoming arc must be from a variable representing
the action immediately preceding the action for which the
probability is being specified.

Associated with each conditioning case pattern is a set
of probabilities to assign depending upon the state value of
the variable for which the conditional probabilities are being
determined. In the case of a script node, α(Ω, Π) = { 0.95,
0.04, 0.01 } corresponding to the state values of {Inactive,
Active, Achieved} respectively, while for an ACTION node,
α(Ω, Π) = { 0.95, 0.05 }, which would correspond to state
values of {Notperformed, Performed}. All conditional prob-
ability table entries for all variables in the plan recognition
network that have a conditioning case that meets this crite-
rion have their values set according to this particular set of
values. In short, PRNs start with a generic case-based model
of the syntactic, temporal, and causal relationships between
belief network nodes, not the actual in-use statistical proba-
bilities (which can eventually be learned).

Runtime Operation

In this section, we briefly describe how our enhanced JAWS
system works. All of the components illustrated in Figure 1
have been implemented and are operational.

The mode of assistance fully implemented at this point
is during the generation of scripts. In this mode, the user
invokes the Macro Recorder to start recording actions (pos-
sibly containing mistakes of various types), performs the ac-
tions required to achieve a particular task, and then turns the
Macro Recorder off. The SGI is then invoked, which uses
the PRE to analyze the sequence of actions and events in
order to optimize the raw recorded command and event se-

(B) Modeling iteration (WHILE loops)

Script loopy
 Action1
 while (condition==True)
 WhileAction1
 WhileAction2
 endWhile
 Action2
EndScript

� �
� �
� �
� �
� �
� �
� �
� �

loopy

� �
� �
� �
� �
� �
� �
� �
� �

Action1
� �
� �
� �
� �
� �
� �
� �
� �

WhileAction1
� �
� �
� �
� �
� �
� �
� �
� �

WhileAction2
� �
� �
� �
� �
� �
� �
� �
� �

Action2

� �
� �
� �
� �
� �
� �
� �
� �
� �

condition==True

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

Action1

� �
� �
� �
� �
� �
� �
� �
� �

subfunction

� �
� �
� �
� �
� �
� �
� �
� �

Action3

Script multilevel
 Action1
 subfunction()
 Action3
EndScript

Function subfunction
 funcAction1
 funcAction2
EndFunction

multilevel

� �
� �
� �
� �
� �
� �
� �
� �

funcAction1

� �
� �
� �
� �
� �
� �
� �
� �
� �

funcAction2

(D) Modeling functions and sub-script invocations

� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

Action1

� �
� �
� �
� �
� �
� �
� �
� �

Action2

� �
� �
� �
� �
� �
� �
� �
� �

Action3

Script sequence
 Action1
 Action2
 Action3
EndScript

� �
� �
� �
� �
� �
� �
� �

Action1_ev

sequence

� �
� �
� �
� �
� �
� �
� �
� �

Action2_ev

� �
� �
� �
� �
� �
� �
� �

Action3_ev

(A) Modeling sequences of actions/events

(C) Modeling conditional branching (IF-THEN-ELIF-ELSE-ENDIF)

Script branchy
 if (value==1) then
 IfAction1
 IfAction2
 elif (value==2) then
 ElifAction1
 ElifAction2
 else
 ElseAction1
 ElseAction2
 endif
EndScript

� �
� �
� �
� �
� �
� �
� �
� �

branchy

� �
� �
� �
� �
� �
� �
� �
� �

ifAction1
� �
� �
� �
� �
� �
� �
� �
� �

ifAction2
� �
� �
� �
� �
� �
� �
� �
� �

ElifAction1
� �
� �
� �
� �
� �
� �
� �
� �

ElifAction2

� �
� �
� �
� �
� �
� �
� �
� �
� �

ElseAction1
� �
� �
� �
� �
� �
� �
� �
� �
� �

ElseAction2
� �
� �
� �
� �
� �
� �
� �
� �
� �

value==1

� �
� �
� �
� �
� �
� �
� �
� �

value != 1 or 2

� �
� �
� �
� �
� �
� �
� �
� �

value==2

Legend:
 Nodes:

 Arcs:

� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

script action evidence condition

parent script prior action evidence condition

Figure 4: PRN constructs that model various JAWS script constructs.

Arc Semantics
Ω Π Classification

ONE Active Parent Script
ALL Inactive, Prior Action

NotPerformed
DONTCARE ANY Prior Branch
DONTCARE ANY Loop Condition
DONTCARE ANY Negative Loop Conditions

Table 1: An example of an ASPRN probability pattern. This
pattern matches all non–first–action actions of a sequence
(indicated by a Π value other than ANY in the Prior Action
row) within a plan where the parent goal is Active and the
previous action/subgoal in the sequence is either Inactive or
NotPerformed.
There are 31 other such patterns defined that cover all mod-
eled network possibilities.

PerformScript Tab()
PerformScript Tab()
PerformScript Tab()
PerformScript Tab()
PerformScript Tab()
PerformScript Tab()
PerformScript Tab()
PerformScript Tab()
PerformScript Tab()
PerformScript Tab()
PerformScript Tab()
PerformScript Enter()
WaitForWindowWithName("CNN.com")
PerformScript Tab()
PerformScript Tab()
PerformScript IEFind()
TypeKey("z")
TypeKey("i")
TypeKey("p")
TypeKey("Enter")
TypeKey("9")
TypeKey("2")
TypeKey("0")
TypeKey("5")
TypeKey("6")
TypeKey("Enter")

Figure 5: The pre-optimized script for reading weather at
CNN.com (as recorded by the Macro Recorder).

Script checkWeather()
MovetoLine(39)
PerformScript Enter()
WaitForWindowWithName("CNN.com")
MovetoLine(3)
PerformScript IEFind()
MacroSetWindowText("zip")
EnterText("92056")

EndScript

Figure 6: The post-optimized script for reading weather at
CNN.com.

Figure 7: Left, the PRN constructed by ASPRN (evidence
nodes not shown). Right, the probability distribution for
the script being performed by the user with no observations
(i.e., priors) at top, MoveToLine observed (second), Enter
observed (third), and all actions observed (bottom). Note the
gradual progression from Inactive to Achieved (i.e., com-
pleted).

quence. The PRE uses ASPRN’s API to make observations5

at several levels within the PRNs: at evidence nodes when
there is uncertainty related to correlating Macro Recorder
entries with script actions; at action nodes (one level up from
the evidence level) when this can be done with surety; and
at the script nodes when this can be directly ascertained by
observations6. The PRE then uses the ASPRN API to trig-
ger Bayesian updating in the PRNs and to query the PRN
for the posteriors of nodes of interest. Based on the values
of the posteriors from the PRE, the SGI makes decisions on
how best to optimize the script by replacing multiple Macro
Recorder raw actions with a single macro or function invo-
cation. The user can review and modify the optimized script
in a number of ways before finally accepting or rejecting it.
Acceptance or rejection of the replacement suggestions will
be used by planned future Bayesian learning capabilities to
adjust the internal PRN models to tailor the models to the
user.

During what we consider normal use of the extended
JAWS system, the user will be navigating between and
within web pages while JAWS observes the user’s actions
and screen events and “pipes” them to the PRE. After each
observed action/event, the PRE adds this information as ev-
idence into the PRNs in the PRN Library and invokes belief
updating. The PRE sorts the scripts based on posterior prob-
abilities to determine the most likely script being pursued by
the user.

As an example, the user recorded the macro shown in Fig-
ure 5. This relatively lengthy, overly verbose script was op-
timzed by the system into the script shown in Figure 6. Fig-
ure 7 illustrates how PRN posteriors react to evidence of the
user’s actions7

PRNs modeling scripts that are close but do not quite
match the evidence pattern do not react as strongly and re-
sult in lower posterior probabilities, allowing the PRE to
discriminate between alternatives. Once a script has a suffi-
ciently high likelihood of being pursued (initial user studies
have determined roughly appropriate value for this but more
need to be performed), the system can inform the user that
a script exists that can perform their task much more effi-
ciently or is close but needs to be tailored slightly for the
user’s current task. The Bayesian learning capabilities that
will be added at a later stage will take the user’s acceptance
or rejection of this suggestion and gradually adjust the PRNs
to the user’s preferences (the rate of which will also be de-
termined through user studies). This mode of operation is
almost fully implemented, lacking user prompting for assis-
tance and final integration of the action/event “pipe” with
the PRE.

5These are currently ascribed with certainty, but observations to
ASPRN can also be made as likelihood values.

6Evidence can be made at condition nodes as well but we have
not yet needed to do this.

7It is beyond the scope of this paper to describe how such a net-
work behaves for all observation patterns (e.g. those with irrelevant
or erroneous actions). For more details refer to (Huber, Durfee, &
Wellman 1994; Huber 1996).

Future Work
There remains a large number of future research and im-
plementation issues in addition to the possibilities alluded
to earlier. For example, we have performed some initial
user trials with experienced JAWS users to evaluate the sys-
tem in whole and in part, many more aspects of the system
need to be evaluated in more depth before actually field-
ing it. For example, a number of variations and special-
izations of PRN topographies and conditional probabilities
need to be explored to determine the optimal configura-
tion for screen reader tasks. There are tradeoffs in mod-
eling accuracy and computational effort that must be ex-
plored to find the correct balance. Also, while we have
an internal object-oriented procedural model, we have yet
to take advantage of recent object-oriented probabilistic
modeling research (e.g., (Barry, Laskey, & Brouse 2000;
Pfeffer et al. 1999). Explicitly modeling typical user de-
viations/errors (Calistri-Yeh 1991) could also be used to ad-
vantage .

With respect to application domains, our work to date
with the visually impaired has focused almost exclusively
on tasks that are performed on the World Wide Web. Our
continuing work will also focus on the vocational and ed-
ucational uses of the proposed software involving off-line
applications. In addition, a formal experiment will be con-
ducted to examine the proposed software’s ability to reduce
the time and cost associated with (1) making a worksite ac-
cessible for the visually impaired and (2) training a visually
impaired employee to use an accessible workstation.

Acknowledgements
We would like to acknowledge the National Science Foun-
dation, which funded this project under grant DMI-0091590.
We would also like to acknowledge the work of Lin Ma,
a graduate student at the University of Pittsburgh, and
Liela Garcia, a software engineer at Freedom Scientific’s
Blind/Low-Vision Group. Both have contributed signif-
icantly to the implementation of various aspects of this
project.

References
Barry, P.; Laskey, K.; and Brouse, P. 2000. Development
of Bayesian Networks from Unified Modeling Language
(UML) Artifacts. In Proceedings of the Twelth Software
Engineering/Knowledge Engineering 2000 Conference.

Broverman, C.; Huff, K.; and Lesser, V. 1987. The Role of
Plan Recognition in Design of an Intelligent User Interface.
In Proceedings of the IEEE Systems, Man, and Cybernetics
Conference, 863–868.

Calistri-Yeh, R. J. 1991. Classifying and detecting plan-
based misconceptions for robust plan recognition. AI Mag-
azine 12(3):34–35.

Goldman, R. P.; Geib, C. W.; and Miller, C. A. 1999. A
New Model of Plan Recognition. In Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intelligence,
245–254.

Goodman, B., and Litman, D. 1990. Plan Recognition for
Intelligent Interfaces. In Proceedings of the Sixth Confer-
ence on Artificial Intelligence Applications, 297–303.
Huber, M., and Durfee, E. 1995. Deciding When to
Commit to Action During Observation-based Coordina-
tion. In Proceedings of the First International Conference
on Multi-Agent Systems (ICMAS), 163–170.
Huber, M. J., and Hadley, T. 1997. Multiple Roles, Mul-
tiple Teams, Dynamic Environment: Autonomous Netrek
Agents. In Johnson, W. L., ed., Proceedings of the First In-
ternational Conference on Autonomous Agents, 332–339.
New York: ACM Press.
Huber, M. J., and Simpson, R. 2003. Plan Recogni-
tion to Aid the Visually Impaired. In Brusilovsky; Cor-
bett; and de Rosis., eds., Proceedings of the Ninth Interna-
tional Conference on User Modeling, 138–142. New York:
Springer.
Huber, M.; Durfee, E.; and Wellman, M. 1994. The Auto-
mated Mapping of Plans for Plan Recognition. In Proceed-
ings of the Tenth Conference on Uncertainty in Artificial
Intelligence (UAI), 344–351.
Huber, M. 1996. Plan-Based Plan Recognition Models for
the Effective Coordination of Agents Through Observation.
Ph.D. Dissertation, The University of Michigan.
Kaminka, G.; Pynadath, D.; and Tambe, M. 2002. Monitor-
ing teams by overhearing: A multiagent plan-recognition
approach. Journal of AI Research 17:83–135.
McNeil, J. 1993. Americans with Disabilities: 1991-
92. U.S. Bureau of the Census. Current Population Re-
ports, P70-33, U.S. Government Printing Office, Washing-
ton, DC.
Paek, T., and Horvitz, E. 2000. Conversation as Action
Under Uncertainty. In Proceedings of the 16th Conference
on Uncertainty in Artificial Intelligence (UAI-2000), 455–
464.
Pfeffer, A.; Koller, D.; Milch, B.; and Takusagawa, K. T.
1999. SPOOK: A System for Probabilistic Object-Oriented
Knowledge Representation. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence (UAI),
541–550.
Raman, T. 1997. The Audi-
ble WWW - The World In My Ears.
http://simon.cs.cornell.edu/Info/People/raman/publications/www-
access-97/.
U.S. Department of Education. 1996. Getting America’s
Students Ready for the 21st Century. Washington, DC.
http://www.ed.gov/Technology/Plan/NatTechPlan/title.html.
Vilain, M. 1990. Getting Serious About Parsing Plans: a
Grammatical Analysis of Plan Recognition. In Proceed-
ings of the Eighth National Conference on Artificial Intel-
ligence, 190–197.

