
Multiple Roles, Multiple Teams, Dynamic Environment: Autonomous

Netrek Agents

�

Marcus J. Huber Tedd Hadley

Arti�cial Intelligence Lab

The University of Michigan University of California, Irvine

Ann Arbor, Michigan Irvine, California

marcush@eecs.umich.edu hadley@uci.edu

Abstract

We describe the architecture and performance of au-

tonomous agents that play the complex, multi-faceted

internet game called Netrek. To perform competently

within Netrek, an agent must be capable of 1) re-

acting in real-time to arcade-like tasks and environ-

ment changes within the local surroundings, 2) rea-

soning about strategy and long-term tasks at a slower

pace and on a global scale, and 3) coordinating both

with teammates and against members of the oppos-

ing team. Agents capable of operating within the Ne-

trek environment, therefore, require a reactive,
exi-

ble, multi-level framework. We describe in detail our

current agent implementation, which is based upon

the UMPRS (University of Michigan Procedural Rea-

soning System) architecture. As multi-agent coordina-

tion plays a signi�cant role within the Netrek domain,

we describe recent research in extending the current

communication-based intra-team coordination scheme

with a plan recognition scheme that enhances both

intra- and inter-team coordination.

Introduction

We are currently involved in research in multi-agent co-

ordination that utilizes totally autonomous, \robotic"

agents to test our theories. We wished to perform

experiments within a complex, dynamic environment,

where the agents would perform complex tasks and

be motivated to coordinate with and against one an-

other. After looking at the characteristics of several

experimental environments and task domains, we �-

nally arrived upon the Netrek domain and environ-

ment. We will describe Netrek is some detail later, but

�

This research was sponsored in part by the NSF under

grant IRI-9158473, and by DARPA under contracts DAAE-

07-92-C-R012 and N66001-93-D-0058.

in short, Netrek is a complex, real-time, multi-player,

multi-team internet game normally played by humans

typically distributed across the country and possibly

the world.

Designing and implementing autonomous robotic

agents capable of competently playing Netrek as an

individual, and also capable of coordinating with mem-

bers of the same team while coordinating against mem-

bers of the opposing team, a natural component of the

game, is a signi�cant challenge. Interesting issues arise

in many aspects of the architecture and behavior of

individual agents, and coordination between multiple

agents. In this paper, we describe the implementa-

tion of the agents currently being utilized in our re-

search. The next section describes the Netrek environ-

ment in detail, including team and individual goals.

The following section describes the agent architecture

currently utilized, and describes how the agent makes

decisions about its appropriate role and then executes

the plan associated with that role. In the section fol-

lowing this, we brie
y describe recent augmentation of

the robotic agents to add plan recognition capabilities,

and describe how this extension improves the agent's

performance. Finally, in the last section, we summa-

rize everything and spend some time discussing ideas

we would like to the explore in the future.

Simulation Domain and Environment

Environment Characteristics

The world in which our autonomous agents live is a dy-

namic, real-time, �ne-grained, multi-agent simulator

originally constructed for the internet network game

called Netrek. The environment is managed by a server

process that is distinct from the players, which connect

as clients from anywhere in the world. In the simula-

tion, up to 16 players act in a grid world of 100,000

units by 100,000 units, where the agents are organized

into two teams, with up to 8 agents on each team.

The environment has distributed throughout it forty

labeled, stationary landmarks, called "planets", as

shown on the right side of Figure 1; the right side is the

long-range, \galactic" view that a player has of the en-

vironment. Each planet has resources associated with

it, with each planet possibly having di�erent resources

than other planets. Each planet has a dynamically

changing, limited number of a resource called \armies",

which grow upon each planet. The rest of a planet's

resources are static, and determine whether the planet

has extra refueling, repair, or army growth capability.

Each of four teams initially own ten of the forty plan-

ets, with each team's planets occupying one of the four

corners of the "galaxy". Only two teams compete in

any single \standard" game so that only twenty plan-

ets are actually contested. The Netrek server updates

the environment rapidly, ten times per second, and this

is the rate at which the agents get updates about the

world. The agents are typically constrained to be able

to perform only �ve atomic actions per second.

Players also have a smaller, more precise, \tactical"

view of the world, shown on the left side of Figure 1,

and this is where they focus much of their attention

during interaction with other players. During play,

individual players \dog�ght" individual agents of the

other team on and those agents that are victorious are

then capable of picking up armies from the team's own

planets (which produce armies) and transporting the

armies to a planet owned by the opposing team. If

more armies are transported to an opponent's planet

than that planet has armies, the planet changes own-

ership. The global objective of each team in the sim-

ulation is to capture all of the other team's planets.

The agents that lose dog�ghts are placed back near

the "homeworld" of the player's team (Romulus for

the Romulans, Earth for the Federation, etc.).

Players in the game are faced with a large number of

decisions, most of which must be made very quickly in

order to be able to act in time to be e�ective. Besides

the tactical \arcade"-level decision making of dog�ght-

ing, players must also decide where and when to dog-

�ght to be most e�ective. These decisions are depen-

dent upon the larger, strategic context of the game,

such as where concentrations of players are, what plan-

ets are being contested, which opposing players are car-

rying armies, what other teammates are doing, etc.

Agent Architecture

In this section, we describe the implemented agent ar-

chitecture. This architecture addresses many issues

found in "real" domains such as mobile robotics, where

the environment is complex, dynamic, and uncertain.

As mentioned earlier, all agents in the environment are

permitted to perform actions �ve times a second typ-

ically, where the actions consist of various movement,

combat, navigation, and communication actions. A

player in Netrek cannot a�ord to sit idle for a long pe-

riod of time reasoning about what it should do. The

environment may change dramatically while the player

is reasoning, most likely ruining the reasoning already

performed. Instead, Netrek agents are better o� re-

maining active at all times, acting and reacting con-

tinuously in the short term, directing and altering its

actions as best it can to achieve the long-term goals

that it has.

Mobile robotics research has, in particular, recog-

nized and addressed architectures for performing sig-

ni�cant levels of reasoning while dealing with dy-

namic environments. Some architectures break the

architecture into several distinct modules, with a

"reasoning" component that reasons over long-term

goals, a "scheduling" component that orders goals and

plans, and a "reactive" component that performed lim-

ited, short-term reasoning based upon the scheduled

tasks (Connell 1992; Gat 1992). Other architectures

are broken into a number of coordinating modules de-

signed for particular functionality and behavior char-

acteristics with some modules performing reasoning

and other modules handling reactive short-term behav-

ior (Simmons 1990; Arkin, Riseman, & Hanson 1987).

Another architecture, the Procedural Reasoning Sys-

tem (PRS) manages reactivity while exhibiting goal-

driven behavior by continually interleaving execution

of its long-term plans with evaluation of the current

situation, which can invoke reactive plans when nec-

essary (Ingrand, George�, & Rao 1992). All of these

architectures have previously demonstrated their abil-

ity to work e�ectively in domains with characteristics

similar to Netrek.

The architecture that we chose to base our Netrek

agents upon is a C++ implementation of PRS done

by the University of Michigan, called UMPRS (Hu-

ber et al. 1993), which we describe in some detail

below. The decision to use UMPRS was made both

because UMPRS has characteristics that promised to

match well with the domain and tasks and was readily

available. We are interested in investigating the use of

alternative architectures and we plan on exploring this

in the future.

UMPRS - The University of Michigan

Procedural Reasoning System

UMPRS is a general-purpose reasoning system, inte-

grating traditional goal-directed reasoning and reac-

tive behavior. UMPRS continuously tests its decisions

(both high- and low-level) against its changing knowl-

edge about the world, and can redirect the choices

of actions dynamically while remaining purposeful to

Figure 1: The standard, asymmetric Netrek tactical and galactic displays showing several players from both teams.

This is a scene (from the perspective of Romulan player 'a') from a human Netrek game with eight players per

side. Interesting features in the scene include player '5' phasoring player 'a', torpedoes from player '5'
ying toward

player 'b', and player 'b' (near the planet labeled \Capel") just beginning to cloak (becoming invisible on the

tactical display. The planet labeled \Rigel" with the \?" symbol in the middle of planet means that the planet

was just taken by the Federation team. The di�erent ship icons indicate di�erent ship types and/or teams.

the extent of unexpected changes to the environment.

UMPRS is composed of �ve major components: a

database representing the current world state; a library

of plans; a set of goals to be achieved; an intention

structure that maintains the runtime state of the set

of currently active goals; and the interpreter, the active

component that reasons about the other components

to determine what to do. The UMPRS execution cy-

cle is very similar to that originally discussed for PRS

in (Ingrand, George�, & Rao 1992). When a new fact

about the world is recorded in the world model through

sensing, communication, or internal conclusions, the

UMPRS interpreter will look for KAs that are appli-

cable to the new situation. Likewise, if a new goal (or

goals) is added, UMPRS looks for applicable KAs to

satisfy the new goal(s). In either case, UMPRS se-

lects one of the applicable KAs, weighs its importance

against that which it is actively working on, and if

found to be of more importance, places it on the inten-

tion structure, and then executes actions in the active

\intention". Alternatively, the system may continue to

execute the intention currently on the intention struc-

ture. A diagram of the UMPRS architecture is shown

in Figure 2.

The UMPRS world model holds the facts that rep-

resent the current state of the world. Information that

might be kept there includes state variables, sensory in-

GOALS
INTENTION
STRUCTURE

MONITOR

SENSORS

ENVIRONMENT

EFFECTORS

 WORLD MODEL
(BELIEF DATABASE)

KA LIBRARY
 (PLANS)

INTERPRETER
 (REASONER)

 COMMAND
GENERATOR

UMPRS

Figure 2: The UMPRS system architecture.

formation, conclusions from deduction or inferencing,

modeling information, etc.

The UMPRS plan library contains one or more KAs

which de�ne procedural methods for accomplishing

goals. A KA's applicability is limited to a particular

purpose, or goal, and may be further constrained to

a certain context. The procedure to follow in order

to accomplish the goal is given in the KA's body. The

priority section can be used to in
uence selection of

certain procedures over others through the meta-level

reasoning mechanism of UMPRS. An optional section,

called the failure section, can be used to specify a

procedure to execute when the KA fails for some rea-

son. Each action in a KA's body can specify a goal or

condition to achieve. In addition, a KA action can be

a low{level primitive function to execute directly or an

action that retrieves data from or modi�es the world

model. Furthermore, iteration and branching are sup-

ported for conditional execution of actions.

UMPRS's goal list constitutes conditions or tasks

that the system is supposed to achieve. These goals

are continually evaluated to determine the most im-

portant task to pursue. A plan is selected to achieve

the goal when the context constraints of an applicable

plan is satis�ed by the current situation. Subsequent

execution of the plan may lead to establishment of sub-

goals, or perhaps even more top-level goals.

The UMPRS intention structure maintains informa-

tion related to the runtime state of progress made to-

ward the system's top-level goals. The system will typ-

ically have more than one of these top-level goals, and

each of these goals may, during execution, invoke sub-

goals to achieve lower-level goals. A goal that is being

pursued may be interrupted by a higher priority goal

and then later resumed (if possible). When a goal gets

suspended, due to a higher level goal becoming appli-

cable, the current state of execution of the current goal

is stored.

Netrek Agent Design

The agents were originally programmed entirely in the

C high-level programming language several years ago.

Recently, this C code was in part replaced by UMPRS

KAs and UMPRS primitive functions in order to more

explicitly represent the agents' goals, procedures, and

situational contexts, and thereby increase the
exibil-

ity of the agent tasking. One of UMPRS's primary

advantages is its natural ease at representing procedu-

ral knowledge, so that converting from C code to KAs

was particularly straightforward.

The agent's top-level KAs deal with the agent's in-

terface to the simulator and other such mechanics. The

KAs that represent the beliefs, desires, and intentions

of the agent with regards to the Netrek domain and

tasks are found in the \middle" of the plan hierarchy.

At this point, their are a number of KAs associated

with various agent roles. The more important roles

that the agents can take include: engage, dog�ght

with the closest opponent; assault, a complex role in-

volving either bombing a planet (to reduce the num-

ber of armies on an opponent's planet), or dropping

armies on an opponents planet; escort, help a team

agent when it tries to drop armies on an opponent's

planet; ogg, suicide attack an opponent; protect, de-

fend a team-owned planet from an assault (bomb or

capture); and get armies, move to a planet that has

team armies and pick them up.

Below, in Figure 3, we show the KA that the robot

agents use to decide upon their current role and per-

form that role's task(s). This KA's purpose (goal) is

to determine the next command to perform. This KA

is always applicable (the KA has an empty context),

and is a subgoal for top-level KAs. The KA's pro-

cedural body �rst checks to see if the agent has de-

cided to exit (e.g., the game is over) and skips all of

the signi�cant actions of the body. If the agent is

still active, the agent executes a series of primitive ac-

tions that perform miscellaneous low-level functional-

ity (indicated by the UMPRS action execute, which

speci�es primitive actions), such as �ring phasers and

torpedoes, dodging attacks, and gathering current in-

formation about players and planets. These primitive

actions in essence perform much of the agent's \reac-

tive" behavior.

One statement of the procedural body, however,

speci�es a subgoal (the achieve goto role line) to

perform the agent's current role. There are a number

of KAs for this subgoal, one or more associated with

each of the roles listed above. Each of these \role" KAs

perform the \goal-directed" behavior of the agents ac-

cording to the situation. Several of the KAs used are

shown in Figure 4. These KAs handle the various sit-

uational contexts that may arise. The �rst KA is se-

lected by UMPRS if the agent is ready to take a planet

(e.g., it is currently carrying armies). The second KA

is selected if the agent is not ready to take a planet

(e.g., no armies, one of the conditions embedded in

the predicate not ready to take), and the third KA

is selected if the agent is not ready to even assault be-

cause it has not selected a target planet (embedded

within the predicate not ready to assault.) When

the agent is ready to assault a planet (the �rst KA), it

performs the assault if it is orbiting the target planet,

otherwise it navigates to the target planet �rst.

Agent Performance

Playing against the agents revealed many interesting

characteristics. The robotic agents are formidable dog-

�ghters, reacting extremely quickly and e�ectively to

attacks upon them while simultaneously e�ectively in-

icting damage. The robotic agents dodge torpedoes

exceedingly well, changing speed and course as needed.

Few human players are competent enough dog�ghters

to be able to regularly defeat the robotic agents. Win-

ning dog�ghts is a vital segment of the game as it en-

ables the victor to pick up armies and drop them on

the opposing team's planets.

The robotic agents perform poorly in several aspects

of the game, however. Foremost among these is the

agents' predictability, lack of guile, and steadfastness

KA {
NAME: "Get next command"
PURPOSE: ACHIEVE R_NextCommand;
CONTEXT:
BODY:
 EXECUTE initR_NextCommand $done;
 OR {
 TEST (== $done 1);
 EXECUTE print "initR_NextCommand DONE!\n";
 }
 {
 TEST (!= $done 1);
 EXECUTE do_alert;
 EXECUTE phaser_plasmas;
 EXECUTE warfare 1;
 EXECUTE warfare 2;
 EXECUTE handle_misc_problems;
 EXECUTE init_dodge;
 EXECUTE do_defense;
 ACHIEVE do_role (get_role);
 EXECUTE update_players;
 EXECUTE update_planets;
 EXECUTE decide;
 EXECUTE exitR_NextCommand;
 };
}

Figure 3: The top-level KA for the autonomous Netrek

agent.

KA {
NAME: "Assault a planet"
PURPOSE: ACHIEVE assault;
CONTEXT: (|| (! (not_ready_to_assault))
 (! (not_ready_to_take)))
BODY:
 EXECUTE set_statestate 4; // S_DEFENSE
 EXECUTE print "PRS: Assaulting planet.n";
 OR {
 TEST (orbiting "ASSAULT");
 EXECUTE print "PRS: Orbiting planet.\n";
 EXECUTE assault_planet;
 } {
 TEST (== (get_stateassault_req) 1);
 EXECUTE print "PRS: Going to take planet.\n";
 EXECUTE notify_take 1;
 EXECUTE goto_assault_planet;
 } {
 EXECUTE print "PRS: Going to assault planet.\n";
 EXECUTE goto_assault_planet;
 };
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
KA {
NAME: "Drop assaulting planet"
PURPOSE: ACHIEVE assault;
CONTEXT: (not_ready_to_take);
BODY:
 EXECUTE print "PRS assault: Not ready to take.\n";
 EXECUTE unassault_c "no armies";
}

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
KA {
NAME: "Not ready to bomb a planet"
PURPOSE: ACHIEVE assault;
CONTEXT: (not_ready_to_assault);
BODY:
 EXECUTE print "PRS assault: Not ready to assault.\n";
}

Figure 4: The KAs for assaulting (bombing or taking)

a planet.

to ful�ll their missions. Human players quickly �gure

out the robotic agents' individual weaknesses and take

advantage of them. One aspect of future work on the

agents will be to add
exibility in the pursuit of their

goals so that they are not as predictable.

The robotic agents are also inferior to their human

counterparts in coordinating their activities. While

play in a game, it is easy to see that players work-

ing together toward a common goal greatly improve

the chances of success. A player attempting to take a

planet with the help of seven teammates that are ac-

tively protecting the player has a much better chance

of doing so compared to having no help from team-

mates. In the next section we show how coordination

of the agents was improved greatly in a number of dif-

ferent areas by extending their reasoning capabilities

to include the ablity to infer the goals and plans of

other players (this is called plan recognition)

Extensions and Experiments

The procedure of adding plan recognition capabilities

to the Netrek agents was greatly facilitated through

the use of the ASPRN (Automated Synthesis of Plan

Recognition Networks) system (Huber, Durfee, &

Wellman 1994). ASPRN quickly and automatically

constructs Plan Recognition Networks (PRNs) from an

agent's native, executable plan library. PRNs are spe-

cially constructed probabilistic networks that support

plan recognition inferencing. The agent's decision-

making routines were then extended to consider some

of the information supplied by the PRNs. Future work

may include a more thorough and complete utilization

of the rich information provided by PRNs.

We ran a number of experiments to explore the rela-

tive advantages and disadvantages of plan-recognition-

based coordination of teams of agents. Our �rst ex-

periments, however, simply pitted the UMPRS version

of the agents against the original C agents. We use

the C agents as a performance baseline against which

to measure the impact of various architectural and

environmental factors upon agent and coordination

performance. We then went on to compare UMPRS

plan-recognition-equipped agents against the original

C agents.

During each experiment, we accumulated a subset of

statistics which are typically accumulated during hu-

man INL (International Netrek League) matches (Ahn

1996). These statistics are analyzed after human

games to determine relative performance and provide

insight into autonomous agent performance as well.

These statistic consisted of:

� tpt - total planets taken, the number of planets totally

converted to the team's ownership.

� tpd - total planets destroyed, the number of planets

made independent (i.e., reduced to 0 armies).

� tek - total enemy killed, the number of dog�ghts won by

team agents.

� def - deaths by enemy �re, the number of times team

agents died.

� tab - total armies bombed, the number of armies

bombed o� enemy planets.

� tac - total armies carried, the number of armies picked

up by the team's agents.

� cak - carried armies killed, the number of armies that

died while being carried by agents.

� eao - enemy armies ogged, the number of armies killed

as a result of enemy �re.

Some additional informationwas also captured, such

as total experiment time (referred to as \time" in ex-

periment results shown later) and bombing latency

(the accumulated time between when a planet grew

armies and when the planet was bombed, and referred

to as \latency" in the results).

Explicit vs. Implicit Representation

Results

We brie
y describe our �rst experiment's results as

they simply represent a baseline comparison of the

UMPRS agents (without plan recognition or commu-

nication capabilities) when they competed against the

equivalent C agents. We hypothesized that the di-

rectly converted UMPRS agents, with their explicit

representation of goals and plans, could only do as

well but not better than the original agents because

of the inherent overhead of UMPRS. We also hypoth-

esized that the UMPRS agents will be easier to retask

and be more
exible in the face of changing situations

once the agents are extended to fully utilized UMPRS's

functionality. Our experiments shed some light on the

former hypothesis, but we leave to future work the re-

design and extension of the agents to leverage UMPRS.

As shown in Table 1, of forty experiments, the origi-

nal C agents won 25, or 62.5 percent, of them. Ex-

periment statistics show that the original C agents

performed slightly better than the UMPRS agents al-

most across the board, indicating a slight performance

decrease due to the overhead associated with the use

of UMPRS and its explicit goal and plan representa-

tion and execution scheme. Clearly, the computational

overhead associated with UMPRS's more general and

exible architecture outweighed its bene�ts in a direct

translation from C functions. However, we expect that

Team Stat. total avg. std.dev

UMPRS tpt 75 1.88 7.02

bots tpd 90 2.25 8.38

tek 775 19.38 54.97

def 877 21.93 42.85

tab 8007 200.18 424.93

tac 728 18.2 52.47

cak 49 1.23 7.92

eao 55 1.38 5.88

time 15663.0

latency 23453.0

C bots tpt 107 2.68 7.30

tpd 115 2.88 8.04

tek 864 21.6 41.31

def 794 19.85 56.46

tab 7985 199.62 427.59

tac 943 23.58 52.80

cak 55 1.38 5.88

eao 44 1.1 6.97

time 14227.9

latency 21188.1

Table 1: Experiment statistics of UM-PRS agents vs.

original C agents.

we will realize signi�cant bene�ts in both reduced im-

plementation time as well as increased agent perfor-

mance when we extend the agents' behavior to deal

with more of the task and environmental complexity.

Non-communicating agent results

The next two sets of experiments were conducted to

determine how e�ective our agents that coordinate us-

ing their new plan recognition capabilities would be

against the original agents. In the �rst experiments,

we placed the agents in a world where their commu-

nication channels are disabled for some reason (e.g.,

being jammed). In the second set of experiments, we

pitted the plan recognizing agents against C agents

that could communicate and coordinate, although in a

limited manner.

The results of the �rst series of experiments, with the

plan-recognizing agents (\PRbots") competing against

non-communicatingC agents (\Stdbots"), is shown in

Table 2. In this series, the plan recognizing robots

won 36 games. Almost all of the statistics in the ta-

ble point to dominance by the PRbots. The PRbots

captured and destroyed more planets, won more dog-

�ghts, carried more armies, and killed more enemy-

carried armies. Bombing latency re
ects that the

PRbots coordinated much better in their bombing and

distributed themselves better when multiple planets

needed bombing (more on this later). The higher \tab"

statistic for the Stdbots seems at �rst glance to indi-

cate that the Stdbots did a better job bombing overall,

but this must be mitigated by the fact that, as the ex-

periments progressed, the Stdbots had fewer planets

producing armies while the PRbots respectively had

more planets.

In this set of experiments, the PRbots clearly out-

matched the Stdbots. One important result of these

experiments was the establishment that the plan rec-

ognizing agents were apparently able to recognize the

goals/plans of the other agents early enough to give

the coordinating agents an opportunity to be in the

right place and time to help or hinder, as the situa-

tion required. Had the same observations been made

just before the observed agent completed the critical

portion of its task (e.g., dropping armies on a planet)

the observing agent would have been unable coordinate

with the observed agent. This introduces the concept

of \observation distribution", a measure of where ob-

servable actions occur during execution of a plan (e.g.,

early or late in the plan). This is an extremely impor-

tant issue in plan recognition and one that deserves

much more attention.

Another important aspect was the negligible natu-

rally occurring overhead associated with performing

plan recognition observations and inferencing (typi-

cally 0.02 real-time seconds). Clearly this is a nearly

ideal situation, and in future work we will simulate

more complex and higher cost perceptual processing

and inferencing in order to gain a better understand-

ing of where plan recognition becomes too much of a

burden to be of utility.

Observing the experiments showed that the PRbots

bombed in a much more coordinated fashion, using

their plan recognition capabilities to determine that

some other teammate was already bombing (or go-

ing to bomb) an enemy planet and choosing another

planet to bomb or, if there were no more planets to

bomb, switching to some other role. The Stdbots, on

the other hand, quite often bombed planets en masse

and oftentimes moved and bombed as a group. The

PRbots, with their better bombing e�ciency, had more

opportunity to perform other roles such as protecting

armies and defending planets from enemies carrying

armies.

In the second series of experiments, we have started

to explore how plan-recognition-based coordination

compares with communication-based coordination of

varying expressiveness. In these experiments, C

agents utilized a limited communication protocol to

inform teammates when going to attempt to capture

a planet

1

; the receiving C agents would use this infor-

1

This was the default C agent con�guration and commu-

nication protocol implemented. Future work will examine

relative performance as the expressiveness of the protocol

Team Stat. total avg. std.dev

PRBots tpt 122 3.05 5.86

tpd 143 3.575 5.80

tek 954 23.85 52.85

def 752 18.8 49.04

tab 8057 201.425 460.60

tac 1134 28.35 44.32

cak 37 0.925 6.33

eao 80 2 8.60

time 16469.3

latency 30649.9

Stdbots tpt 47 1.175 5.53

tpd 46 1.15 5.20

tek 738 18.45 48.22

def 974 24.35 52.72

tab 8136 203.4 476.03

tac 484 12.1 50.79

cak 80 2 8.60

eao 36 0.9 6.34

time 15338

latency 47219.9

Table 2: Experiment statistics of PR agents vs. non-

communicating \standard" agents.

mation in determining their own course of action and

would assist the capturing agent if they could.

The results of forty experiments of the plan recog-

nizing agents competing against C agents with limited

communications capabilities is shown in Table 3. Of

these experiments, the plan recognizing robots won 35

while the standard robots won just �ve. The statistics

in Table 3 again show dominance by the plan recogniz-

ing agents. Bombing latency again shows the PRbots'

improved bombing coordination, with total bombing

being nearly equivalent. Again, this increased e�-

ciency permitted the PRbots to be more
exible, per-

mitting them to more dynamically switch to other,

more useful, roles. There are two signi�cant items

to note in the results of this experiment. First, the

\eao"/"cak" ratio was reduced from a nearly 2:1 ratio

in the non-communicating experiments to a 1:1 ratio

in the communicating experiments. This indicates that

the Stdbots were much more successful in protecting

(coordinating with) teammates when the teammates

were taking planets. Second, the game time statistics

for when the Stdbots won is signi�cantly lower than the

game time statistics for when the PRbots won. This

suggests that the Stdbots only won when they could

very quickly exploit some particular advantage before

the PRbots could compensate. Conversely, as games

became extended, the PRbots had an increased chance

of compensating for any advantage held by the Stdbots

and eventually established and maintained their own

increases.

Team Stat. total avg. std.dev

PRbots tpt 129 3.23 7.38

tpd 134 3.35 6.80

tek 937 23.43 59.82

def 766 19.15 44.24

tab 8005 200.13 531.73

tac 1178 29.45 60.41

cak 62 1.55 12.53

eao 69 1.48 12.21

time 15147.8

latency 26234.4

Stdbots tpt 41 1.03 7.46

tpd 56 1.4 8.47

tek 776 19.4 53.62

def 981 24.53 69.76

tab 8167 204.18 620.64

tac 511 12.8 71.54

cak 64 1.6 12.21

eao 65 1.63 14.71

time 12478

latency 17742.63

Table 3: Experiment statistics of PR agents vs. com-

municating \standard" agents.

advantage for the victory.

Discussion Coordination through communication

by the Stdbots led to increased Stdbot success. The

Stdbots' communication language and protocol, as de-

�ned for the C agents, are not powerful enough, how-

ever, to overcome the
exibility provided the PRbots

by PRNs. The ability to utilize a restrictive commu-

nication protocol manifested itself in the Stdbot's in-

creased success in safely delivering armies to the PRbot

planets. The Stdbots' communication language and

protocol was too restrictive, however, to impact signif-

icantly enough upon other aspects of the experiments

to completely reduce the dominance by the PRbots.

The relatively rich modeling of the complete task struc-

ture maintained by the PRbots provided them with a

broader scope of coordination information than that

provided by the Stdbots' communicated information,

even though the information provided to the PRbots

by the PRNs was uncertain and perhaps incomplete.

Of note here is that the overhead associated with the

Stdbot's communication was negligible, posing virtu-

ally no computational load and having virtually instan-

taneous transmission. Issues and tradeo�s related to

non-negligible communications with regard to relative

performance against plan recognition is yet another re-

search area to be explored.

Summary

We have described in some detail the design and char-

acteristics of our autonomous Netrek playing agents.

The agents have proven their ability to pursue complex

goals within a very complex, dynamic environment.

Although they do not currently perform at a level to

compete with skilled human players, they nonetheless

represent a signi�cant stepping stone toward that per-

formance level; the addition of relatively modest plan

recognition capabilities has already demonstrated sig-

ni�cantly improved performance. The UMPRS imple-

mentation promises to o�er signi�cant advantages to

agent development in both the short and long term

due to the increased
exibility and expressiveness of

the agent's goals and plans.

Although primarily used so far to explore plan recog-

nition issues, we are looking forward to future research

utilizing these agents in other research areas as well.

One area of interest is exploration of variations in

the agent's architecture through more elaborate use

of UMPRS and through introduction of alternative ar-

chitectures. The agents and domain are also extremely

conducive to exploration of many multi-agent coordi-

nation issues and approaches, including organizational

structures and richer communication-based coordina-

tion paradigms.

References

Ahn, D. 1996. International

Netrek League WWW Home Page. World Wide Web.

http://indigo2.medeng.bgsm.edu/ ahn/INL/index.html.

Arkin, R. C.; Riseman, E. M.; and Hanson, A. R. 1987.

ArRA: An architecture for vision-based robot naviga-

tion. In Proceedings of the DARPA Image Understanding

Workshop, 17{431.

Connell, J. H. 1992. SSS: A hybrid architecture applied

to robot navigation. In Proceedings IEEE International

Conference on Robotics and Automation.

Gat, E. 1992. Integrating planning and reacting in a het-

erogeneous asynchronous architecture for controlling real-

world mobile robots. In Proceedings of the Tenth National

Conference on Arti�cial Intelligence, 809{815.

Huber, M. J.; Lee, J.; Kenny, P.; and Durfee, E. H. 1993.

UM-PRS Programmer and User Guide. The University of

Michigan, 1101 Beal Avenue, Ann Arbor MI 48109.

Huber, M. J.; Durfee, E. H.; and Wellman, M. P. 1994.

The automated mapping of plans for plan recognition. In

Proceedings of the Tenth Conference on Uncertainty in

Arti�cial Intelligence, 344{351.

Ingrand, F.; George�, M.; and Rao, A. 1992. An archi-

tecture for real-time reasoning and system control. IEEE

Expert 7(6):34{44.

Simmons, R. 1990. An architecture for coordinating

planning, sensing and action. In Proceedings of the 1990

DARPA Workshop on Innovative Approaches to Plan-

ning, Scheduling, and Control.

