
Observational Uncertainty in Plan Recognition Among InteractingRobots�Marcus J. HuberEdmund H. DurfeeDistributed Intelligent Agents Group (DIAG)Arti�cial Intelligence LaboratoryThe University of MichiganAnn Arbor, Michigan 48109-2110marcush@engin.umich.edu, durfee@engin.umich.eduMay 16, 1994AbstractPlan recognition is the process of observing another agent's behavior(s) and inferring what, andpossibly why, the agent is acting as it is. Plan recognition becomes a very important means of acquiringsuch information about other agents in situations and domains where explicit communication is eithervery costly, dangerous, or impossible. Performing plan recognition in a physical domain (i.e. the realworld) forces the world's ubiquitous uncertainty upon the observing agent because of the necessity touse real sensors to make the observations. We have developed a multiple resolution, hierarchical planrecognition system to coordinate the motion of two interacting mobile robots. Uncertainty arises in thesystem from dead reckoning errors that accumulate while the robots are moving, as well as by errorsin the computer vision system that is used to detect the other agent's behaviors. Based upon beliefnetworks, the plan recognition system gracefully degrades in performance as the level of uncertaintyabout observations increase.1 IntroductionThe �eld of mobile robotics has progressed to the point that there will soon be signi�cant interaction amongrobots as they attempt to accomplish their assigned tasks. If the robots expect to accomplish their goalsin multiagent situations, they must coordinate their plans with the plans of the other interacting agents.While con
icts can be detected and resolved through the exchange and analysis of information concerningthe plans and goals of the potentially con
icting agents, explicit communication of this information is notalways possible. The agents will then have to rely upon some other means by which to gather the necessaryinformation regarding other agent's plans. Plan recognition is one such paradigm.Plan recognition is the process of observing another agent's behavior(s) and inferring what, and possiblywhy, the other agent is acting as it is. This inferencing is performed using some form of model of the observedagent's actions, goals, and plans and the relationships between them. An agent's actions, then, providepositive evidence towards its attempt to achieve certain goals and negative evidence towards other goals. Bywatching an agent's behavior over a period of time, this set of alternative goals can be re�ned. Operationin physical domains, however, introduces the issue of dealing with, and reasoning about, uncertainty. Thisuncertainty arises from the sensing that is required in order to make observations of another agent's behavior.In the remainder of this paper, we discuss a plan recognition system designed to operate in physical domains,dealing with observational uncertainty in a natural manner.�This research was sponsored in part by the NSF under grants IRI-9015423, IRI-9010645, and IRI-9158473, and by DARPAunder contract DAAE-07-92-C-R012. 1



2 Related WorkNote that there needs to be no explicit communication between the involved agents. Observations alone canbe su�cient for each of the agents to determine what (and perhaps why) the others agents are acting the waythat they are, and to then coordinate their activities. While a great deal of research on coordinating multipleagents has been done, particularly within Distributed AI, much of this work has assumed (or requires) explicitcommunication between agents [5, 7, 8]. In some situations, agents cannot communicate due to such thingsas noisy radios or broken equipment. Plan recognition may then be the only means by which agents cancoordinate with each other. This may also be true in domains where communication, although possible,may be very costly (e.g. sending messages consumes a great deal of time) or dangerous (e.g. military agentsoperating behind enemy lines). Because of this, we see plan recognition as being a very important mechanismby which agents can acquire the information that they need in order to coordinate their activities with otheragents.Plan recognition research to date, however, has been primarily conducted in such domains as storyunderstanding [3, 4], intelligent interfaces [9, 14], and discourse analysis [12, 13]. These domains lack anessential element of physical domains, however, namely observational uncertainty. In natural language-basedplan recognition systems like story understanding and discourse analysis, \observations" are sentences fromsome textual database; \observations" in intelligent interface domains are commands invoked by such thingsas the press of a mouse button. In that research, there is the assumption that the observations are absolutelyaccurate; each word is correct and each command was actually the command that was invoked.3 The Physical WorldPerforming plan recognition in a physical domain (i.e. the real world) forces the world's ubiquitous un-certainty upon the observing agent; real sensors must be used to make observations. All real sensors areinaccurate and su�er to some extent from noise in the environment and, therefore, each observation hassome level of uncertainty associated with it. Because of this, plan recognition systems designed for domainswithout observational uncertainty are inadequate for the task.We have developed a plan recognition system to investigate the issues associated with physical domains.The domain that we have chosen is that of interacting mobile robots. Using a computer vision system, oneof the two agents observes the actions of the other robot and, using plan recognition to determine the goaldestination of the other robot, plans its motion to rendezvous with the observed robot. Uncertainties areimposed upon the system from two separate sources: dead reckoning errors that accumulate whenever therobots move; and estimation errors by the computer vision system that is used to sense the other robotsactions.Our work to date has dealt with agents moving and navigating through a 
at world. Representing thegoals of the observed robot requires some form of spatial representation of the environment in which therobots operate, with particular distinction given to special goal locations (those deemed interesting for somereason). For operation in very small areas, or where the granularity of representation can be quite large,enumeration of possible locations (e.g. at some quantization level such as centimeter intervals) might beuseful. Larger areas, or the need for a �ner granularity of representation, require a di�erent approach {some form of abstraction { as the system can become bogged down by the sheer number of possibilities.We have developed a spatial representation that employs a multiple resolution hierarchical scheme to makeplan recognition feasible in our domain by reducing the computational demands upon the plan recognitionsystem.4 Spatial RepresentationThe representation scheme that we have developed is similar in some respects to quad trees in that the \map"of the world in which the robots operate is subdivided into quadrants. In this scheme, quadrants are furtherbroken down to higher resolution levels in order to di�erentiate the region in which the observed robot isin from any of the regions in which there are possible destination locations. This heuristic is necessary sothat the observing agent can determine if the watched robot is actually \at" a destination, or merely close2
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s ss s s s(1)(21)(221)(222)(2231)(2232)(2233)(2234)(224)(23)(24)(3)(4) 1 23 4quadrantcoding scheme(a) � � ��Location �� ��Destination�� ��MoveZ Z Z Z Z~ �����=(b)Figure 1: (a) Examples of representations. The �lled circles are possible destination locations, the hollowsquare is the observed robot. (b) Belief network architecture.to one. Quadrants are not broken into higher resolution levels if some prespeci�ed maximum resolution levelhas been reached (a function of how accurate sensors are, what makes sense for the given environment, etc.)Two examples of representations are shown in Figure 1(a). In the top representation in Figure 1(a), thehighest resolution level used was very detailed close to the robot (the hollow square) in order to distinguishits location from the possible destination closest to it (the �lled{in circle immediately to its left).1 In thebottom example, the representation did not have to go to such a high level of detail since the robot wasquite far from any of the possible destinations.5 Plan Recognition ArchitectureOur plan recognition system is based upon belief networks, a graph-oriented probabilistic representation ofcausal and dependency relationships between concepts (see [2] for a gentle introduction). Belief networksallow us to model actions (observable activities of an agent), plans, and goals, and the relationships betweenthem.The belief network that we have started with is shown in Figure 1(b). This network is a model of asimple agent plan: an agent that has a goal of moving to a particular location in the world will examine itscurrent location and plan a sequence of movements that will take it to its goal destination. In causal terms,the belief network states that the current location of the observed robot and the destination that it wishesto attain determines the motion that the robot will take to get to its destination. Our model of motion isthat the robot will try to move directly towards its goal, thereby moving in a straight line from its currentlocation toward the destination.Each node in the belief network shown in Figure 1(b) contains the various values that are possible forthat particular concept. The Location node has as possible states all of the possible location regions (of thecurrent spatial representation such as that seen in Figure 1(a)) that the observed agent might have whileit is trying to attain its goal destination. The Destination node contains all of these possible regions thatcontain one or more destination locations (i.e. a subset of the Location node). The Motion node is evidencefor the agent having moved north, south, east, west, or staying in the same location, and is calculatedbased upon the current and previous observed locations.The belief network is used to perform plan recognition through the propagation of beliefs from evidence,in the form of observations of the other robot's activities, to the possible goals. By observing the robot's1Had the representation not been so detailed, the observing robot would have had to reason that the other robot was at adestination, an observation signi�cantly di�erent than one in which it is \close" to a destination.3
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Figure 2: Uncertainty bounds as the observing and observed robots move.location, and by calculating the motion exhibited by the other robot since the last observation, we can thenpropagate this evidence through the belief network to update the beliefs of where it is going.6 Observational UncertaintyIn Figure 2 we illustrate the uncertainties that arise in our system. Robot 1, the observing robot, startsat position (X1R1; Y 1R1), while the observed robot, Robot 2, starts at (X1R2; Y 1R2). In the �gure, weshow what Robot 1 calculates as the uncertainty of each robot's position at both their initial positions andafter both robots have moved to their second positions. In the �gure, Robot 1 starts with no uncertaintyin its position, perhaps having just been homed to this position. Observation of the other robot, however,introduces uncertainty into Robot 1's estimate of where Robot 2 starts.2 This is a function of the distancebetween the two agents; the farther apart the two robots, the greater the possible error in the localization.Furthermore, after each robot moves to its respective second position, dead reckoning errors also becomea factor. The dead reckoning error accumulated by Robot 1 is shown by the increased uncertainty boundssurrounding Robot 1's second position. Visual localization of Robot 2 again introduces error. The two errorsare additive, so that Robot 1's uncertainty in the position of Robot 2 is potentially even greater from its newposition. This positional uncertainty will continue to increase unless Robot 1 manages to more accuratelydetermine its own position or the agents move su�ciently close together to o�set the larger dead reckoningerror.3The impact of the observational uncertainty on the performance of the system is dramatic. Experimentsin which no method for dealing with the uncertainty was used show that the system can be entirely ba�ed,and broken, by the positional error that arises from the dead reckoning and computer vision systems [11].The system, being committed to assuming observations are correct and exact, occasionally miscalculatesthe location, and therefore the motion. This results in an observed motion of north instead of south (forinstance), contradicting previous, correct observations, and violating the motion model of the belief network.2The computer vision system that is used to make observations returns an estimate of the location of other agents in thecurrent �eld of view, and this estimate is known to be incorrect due to quantization error, noise, poor lighting, etc.3Note that the dead reckoning error accumulated by Robot 2 does not a�ect Robot 1's uncertainty in Robot 2's position.If Robot 2 was also doing plan recognition, its own dead reckoning would be that which contributes to its uncertainty aboutRobot 1's location. 4
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error (b)Figure 3: (a) Uncertainty in the location of the observed agent caused by the accumulation of dead reckoningand computer vision errors means that the agent could be in any of the regions indicated. (b) Motion betweentwo uncertain locations.To deal with the uncertainties associated with this domain, we needed to relax the assumption thatobservations were accurate and correct and, instead, allow a probabilistic mix of possible observation values.By simple modeling of the dead reckoning and computer vision errors as error bounds, we can then calculatethe possible motion and location values. The two errors are additive, and are proportional (with di�erentconstants) to the distance travelled by the observing robot (in the case of dead reckoning) and the visualdistance between the two robots (in the case of the computer vision system). Roughly, dead reckoning errorsaccumulate at approximately 1 meter for every 30 meters of travel, and the computer vision system is in errorapproximately 20 millimeters for every meter of visual distance for CARMEL, our robot (see Section 7).The e�ect of this upon modeling where the observed agent is at any time can be seen in �gure 3(a).Instead of making an observation that the current location of the observed agent is at a single region in thehierarchical representation, we now have to allow for the possibility that it can be in any of regions that theuncertainty bounds overlap, weighted by the amount of overlap.The motion between two locations with uncertainty is depicted in Figure 3(b). The calculations of theobserved agent's motion to incorporate the uncertainty is a function of the amount of overlap of the errorbounds and the magnitude of the motion in the cardinal directions. For example, given the motion of theother agent as that depicted in Figure 3(b), the agent could have moved north or south, and east, butnot west. We have implemented a simple approximation of the motion uncertainty for our experiments,weighting each direction by the distance of travel along that direction, relative to the level of uncertainty.Long motion relative to the uncertainty bounds, then, helps in reducing the ambiguity of the motion. Asthe accumulation of dead reckoning errors grow, however, the ambiguity of the motion increases, and theobservations become more uncertain.7 CARMEL: The Implemented SystemWe have implemented our system on CARMEL, a Cybermotion K2A mobile robot used previously in researchon obstacle avoidance [1] and autonomous robotics [6]. CARMEL serves as the observer, performing planrecognition based on observations of other agents in its environment with which it may interact. CARMELperforms these observations using a computer vision system that detects and calculates the position of objectsmarked with a special bar code [10]. The \agent"'s that CARMEL has observed include another robot (aTRC Labmate) and various people. As mentioned earlier, CARMEL's purpose is to determine where theother agent is moving and then rendezvous at that location.In our implementation, the observing robot periodically looks for the other robot, detects its new location,and calculates the motion that brought the robot to that new position. This data is given to the belief networkas evidence and propagated through it, resulting in new posterior probabilities for each of the destinationregions in the Destination node of the network. Probabilities for individual destinations (as more thanone destination location may be contained in a single region) are then determined, either by associating5



1h 2h3h 4h5h 6h7h 8h9h 10hFigure 4: Experiment environment with locations of interest indicated.the probability associated with a region to a lone destination within that region, or by equally dividingthe probability of a region among all of the destinations within it. The destination that has the highestprobability is taken to be the most likely goal of the observed agent. CARMEL then calculates a path tothat location in order to rendezvous with the agent.CARMEL only travels a short distance toward the destination, however. By periodically stopping alongthe way, CARMEL can make new observations and continually update its beliefs about the observed agent'sintentions. Early, incorrect guesses about the goal location can then be corrected by further observations.The plan recognition system even works in situations where the agent \feints" toward a particular destina-tion for a while and then heads for another goal. The system, having settled on a particular destination,becomes temporarily confused by the change of direction until enough supporting evidence for the new goalis accumulated.8 ExperimentsA series of experiments was conducted to investigate the response of the plan recognition system to varyingdegrees of uncertainty in observations. Because of the di�culty with repeatability using the real robots thatwe have in our lab, these experiments were conducted in simulation.The experiments consisted of two mobile robots in a two{dimensional grid world. In this world weredistributed points of interest to the agents, places in the world that they would like to visit. This \world"is shown in Figure 4. One robot simply moved from its initial position to a designated location of interest.The other robot observed the actions (motion) of the other robot and tried to infer its \goal", the locationthat the other robot was moving to as its �nal destination. The watching robot was given the task ofrendezvousing with the other robot, so that it would move toward the location of interest with the highestprobability. In the case of a tie between locations, the watching agent would move toward the candidatelocation closest to the center of the environment.The experiments that were performed consisted of starting the agents at predetermined initial locationsand letting them continue to act until the robots had successfully rendezvoused. Each initial con�gurationwas repeated for varying amounts of observational uncertainty, and measures of the probability distributionfor the various locations saved. Also recorded was the total amount of error accumulated by the observingagent with regards to its dead reckoning and visual sensing.The results of one experiment is shown in Figure 5. Here, the belief of the �nal destination of the observedrobot is graphed relative to the time step of the simulation. Each line in the graph represents a di�erentlevel of uncertainty, as indicated in the legend. The numbers for Vision and Motion indicate the numberof grids units viewed or moved for one unit of uncertainty attributed to the vision or dead reckoning error,respectively. The graph shows that, when the observing robot had very little uncertainty in its observations,it would �rst believe that a di�erent location was the intended �nal destination of the watched robot (as6
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errorFigure 5: Belief in the �nal destination of the watched agent as the simulation progressed for varying levelsof uncertainty in the observations made by the overwatching agent.indicated by the very low values). However, at a point where the watched robot got very close to its �nallocation, the observing robot would quickly change it mind to the correct location, and would eventuallyrendezvous.4 With large amounts of observational uncertainty, however, the observing agent was neithermisled so severely, nor as quick to change its beliefs toward the most likely �nal destination of the otherrobot. Consequently, the observing robot took much longer to �nally rendezvous, and never did achievethe same high level of con�dence as in experiments with lower levels of uncertainty. However, the systemdemonstrated a graceful degradation in performance. This is a very important characteristic for agentsoperating in uncertain and dynamic environments. Our experience with CARMEL has shown that deadreckoning and other sensing error is an important and persistent issue that must be dealt with, or, as in ourearliest experiments, the inability to deal with the error and associated uncertainty will come back to hauntyou.9 ConclusionsWe have developed and implemented a plan recognition system that deals naturally with the uncertaintyassociated with operation in physical domains. This system permits the e�ective coordination of multiple,interacting robots. Our hierarchical spatial representation makes inferencing feasible in this domain byreducing the computational complexity of the inferencing system. The use of belief networks, as the basisof the plan recognition system, facilitates both modeling of the observational uncertainties probabilistically,as well as providing the mechanism by which the other agent's goals are inferred. Experiments have shownthe performance of the system to degrade gracefully under increasing uncertainty in its observations.10 Future WorkThere are several extensions to the current system that we plan on investigating in the near future. Theseinclude: being able to handle more realistic navigation environments, which contain obstructions, di�erenttypes of terrain, etc.; plan recognition of groups; plan recognition for antagonistic agents; dynamicallychanging goal models; and unknown plans/goals.4The time at which the robots successfully rendezvoused in an experiment is indicated by the �nal graph point for thatparticular plot. 7
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