
THE PROBLEM WITH MULTIPLE ROBOTSMarcus J. Huber and Patrick G. KennyArti�cial Intelligence LaboratoryThe University of MichiganAnn Arbor, Michigan 48109-2110marcush@engin.umich.edu, pkenny@eecs.umich.edu

Copyright  1994 by the American Institute of Aeronautics
and Astronautics, Inc. All rights reserved.

AbstractResearch in multiple, robotic agents is gaining theinterest of an ever increasing number of researchers.Many of these researchers have previously worked insimulation or with single robots, or both. Making thetransition from a simulator to the real world can bevery trying and frustrating to someone with no expe-rience with such a project. The same goes for makingthe transition from a single robot to multiple robots.There are a number of issues that arise, mostly of thepractical and pragmatic variety, that escape consider-ation by researchers making these transitions for the�rst time. We hope to highlight the most importantof these issues { discovered primarily through expe-rience with working on multi{robot projects, two ofwhich are discussed in the paper { so that other re-searchers can give them full consideration when work-ing on their own projects. In addition, we give somesuggestions as to how to eliminate or minimize thenegative impact these issues might have upon the de-velopment of a multiple robot project.IntroductionA time will come when it will be common to seeautonomous robots working together in teams or in-teracting as individuals. Each of these robots will beperforming its speci�c role in achieving whatever ithas been given as tasks. Individual robots, regardlessof whether it is working in a team or not, will dy-namically interact with each other, the environment,and with humans. They will communicate necessaryinformation in noisy environments, �ll in for fallencomrades, and adapt to the temporary loss of sensorsubsystems. This scenario is still a long way in the fu-ture. What will it take to make this a reality? Whileresearch in Robotics and in Distributed AI is alwayspushing toward this future, research is still in its in-fancy compared to what is necessary before robotscan function as described above.Quite a bit of research has been done regardingThis research was sponsored by DARPA under con-tract DAAE-07-92-C-R012.

issues related to multiple agents,6,7,9 and some hasbeen done speci�cally for multiple robots.1,11 How-ever, none of this work has really looked at what aresearcher faces when trying to implement his or herideas on real robots for the �rst time. In this paperwe present a number of issues that arise when mak-ing the transfer from simulated, theoretical, or single{robot research to working with more than one real,autonomous, robot situated in a real world. We dis-cuss each of these issues in some detail and give sug-gestions, based on experience, for dealing with them.In the �rst two sections we discuss the issues relatedto working with more than a single robot and thoseinherent to working with robots situated in the realworld, respectively. We then describe concrete exam-ples of the problems faced when working on multibotprojects. Throughout the paper we give suggestionson what can be done to eliminate or reduce thesekinds of problems.Multibot IssuesA number of issues arise when working with mul-tiple robots. We divide these roughly into the issuesthat arise when looking at the collection of robotsas a whole, and those issues that arise when lookingat the individual robots that make up the collection.Many of the \collective" issues (such as those thatdeal with communication, organization, cooperationstrategies, etc.) have been addressed in DistributedAI (DAI) research and tend to be fairly abstract intheir nature. We talk brie
y about these issues but wedo give pointers to where more in-depth discussionscan be found. Issues that arise from the collectionof \individuals", primarily due to the heterogeneitybetween the agents, seems to be a topic of research ofinterest to a great number of �elds of study (robotics,DAI, arti�cial life, etc.) but to no one �eld in par-ticular. In this section we discuss the issues that wesee are the most signi�cant to researchers workingwith collections of these physically embodied agents(robots).1



HeterogeneityHeterogeneous het.er.o.ge.ne.ous , adj. Consistingof or involving parts that are unlike or without in-terrelation; having dissimilar elements; not homo-geneous. [< GETERO- + Gk genos, kind, sex.]{het'er*o*ge*ne'i*ty n.Heterogeneity among a collection, group, or teamof robots is a BIG issue. In fact, it may be the sin-gle most important issue for researchers making thetransition from simulation or theoretical work to con-sider. Research performed in simulation seldom lacksthe completeness required to fully model the di�er-ences between robot platforms that will serve as thereal{world implementation. Very small di�erences be-tween simulated robots, which appear insigni�cant tothe uninitiated, can become overwhelming when realrobots are pressed into service. We identify a numberof factors to especially watch out for (with respect todi�erences in the robotic platforms) in order to makethe transition to real robots easier, and to reduce thepotential impact upon various aspects of the multiplerobot system if the di�erences are not eliminated orreduced.Robots come in an incredible variety of sizes,shapes, and capabilities. Robots can be arms, mobilebases, gantries, snakes, or any of a number of otheralternatives. This richness of design makes for a widerange of applicability of robots to di�erent domains,environments, and applications. It is also a majorsource of grief for anyone wishing to do research withmore than one of these robots. There are a great num-ber of places where heterogeneity can cause problems.We divide these into innate and non{innate charac-teristics, discussed below.InnateWe consider innate characteristics of a robot to bethose features that a robot is \born" possessing, thosewhich are inherent to a robot's basic design and isgenerally determined by the manufacturer. These in-clude: physical characteristics such as weight, size,and shape; precision and/or accuracy of such thingsas odometry, positioning (e.g. robot body, camera,etc.); modality and number of sensors; characteristicsof the low{level control such as dynamics, function-ality, interfacing; design limitations and characteris-tics such as holonomic characterization, the numberof degrees of freedom, bounds on speed, acceleration,reach, etc., and carrying capacity; and the numberand type of actuators and/or manipulators.Many of these features are either impossible, orvery di�cult, to change, remove, or replace, and area major boon and bane of robotics researchers. Arobot that comes with a powerful, 
exible, and com-plete set of innate \features\ can be greatly advan-tageous. And conversely, a poorly designed robot, orone that may be designed well but ill suited to thetask to which is applied, can be a nightmare.Non{innateWe call the features and characteristics of a robotwhich are in the control of the roboticist the non{innate features of the robot, those which are a re-

sult of work done on the robot to add to or changethe functionality of the robot after it arrives from themanufacturer. This includes such things as: the num-ber, modality, precision, etc. of sensors; the numberand type of actuators and manipulators; the number,power, memory, connectivity, etc. of processors; theprogramming language; the high{level control scheme(if any, which would then include the high{level con-trol interface to the low{level controller); the inter-agent communications modality and characteristics;and \sugar" features like speech synthesis and recog-nition capabilities, graphics displays, etc. It mightalso include those innate characteristics that can bemodi�ed, as there may be some fuzziness to the dis-tinction. There is generally a greater variation in thenon{innate features of a robot than in the innate fea-tures, due to the wide range of add{on and upgradepossibilities, including \homemade" designs.The problemsHeterogeneity is an inherently multi{agent issue,as it is de�ned as the existence of di�erences betweentwo objects, in this case robots. Heterogeneity arisesfrom both the innate and non{innate features of therobots, and may be looked upon as an advantage insituations where the heterogeneity can be exploited.However, the di�erences between robots can, and usu-ally does, eventually cause problems. The problemsassociated with innate and non{innate feature can bevery similar, but may possibly have very di�erent so-lutions (as discussed below). As mentioned earlier,heterogeneity between the robots might very well bethe most important issue to be faced by researchersworking with multiple robots. Our empirical intuitionis that the di�culty of implementing and maintain-ing a collection of multiple robots is a function of boththe heterogeneity and the number of robots. We be-lieve that the relationship is something like that ofFigure 1. As you can see, we believe that the di�-culties associated with increased numbers of agentsincreases at a higher than linear rate. We believethe same follows for heterogeneity. Of course this istotally unsubstantiated, and is based solely on pastexperience with multibot implementations.The problems caused by heterogeneity usuallyman-ifest themselves not in the actual experiments con-ducted by the researcher, but in the developmentstage of the research, where the robots are being read-ied for the experiments. The development period usu-ally serves the purpose of dealing with the di�erences,either to avoid them or to take advantage of them, sothat when the robots are ready to run experiments theissues have already been considered and addressed.While designing and implementing the robots' sen-sors, control systems, processing hardware, coordina-tion scheme, etc., a researcher may face problems inany of a number of areas, which we have divided intothree broad categories: software, hardware, and func-tionality. For each category we describe the sourceof problems that can occur and their e�ect upon thedevelopment of a multibot system.� Software - Software on the various robots in the2



None

Many None

Much

Little

Much

Agents
Heterogeneity

Difficulty

Figure 1: The relationship of di�culty of imple-mentation and maintenance to hetero-geneity and the number of robots.\collection" may be a�ected by di�erences betweenany of a number of robotic characteristics, includ-ing the processors, compilers, programming lan-guages, sensors, speed, development environments,and third{party software libraries of the variousrobots. Any di�erence in these, or any other of theinnate or non{innate features, may create the ne-cessity to modify software to suit a particular robot,which will make the robot all the more heteroge-neous. Research agendas themselves may force dif-ferences in the software systems utilized by di�erentrobots, such as requiring di�erent control architec-tures or obstacle avoidance algorithms, in order tostudy the tradeo�s associated with them. Di�er-ences in software may range from changed param-eters, to modi�ed code, to di�erent software mod-ules, to completely di�erent software systems. Re-gardless of the source and extent of the heterogene-ity, once the di�erences occur it can be a nightmareto make changes across all of the involved robots toaccount for each robot's idiosyncrasies.� Hardware - Robot hardware may di�er in sensors,mechanics, physical dimensions, dynamics, CPU's,equipment storage volume, etc. This may be aresult of having purchased the robots at di�er-ent times, implementing di�erent sensor system de-signs, replacement of broken equipment with non{original parts, etc. Robots that are dissimilar inhardware may or may not create problems; If thehardware on di�erent robots is not equivalent, inthat there are enough di�erences in functional-ity, modality, speed, etc. to not be transparentlyswitchable, software problems like those discussedabove will most likely be created. And other dif-�culties may also arise, such as having to gain ex-pertise on more and more varied equipment andmaintaining the various robots' di�erent hardware.� Functionality - The capabilities that a robot hasdepends upon the combination of hardware andsoftware that it has. Given a robot with a par-ticular hardware con�guration, the robot can havea range of functionality, depending upon the soft-

ware written to use the hardware. Likewise, givencontrol software and sensing algorithms, the robotcan have varied functionality dependent upon thecharacteristics of the actual sensors, manipulators,drive motors, and other hardware that the robot is�tted with. Heterogeneity in any aspect of a robot,be it sensing, control, motion, manipulation, orsome other aspect, creates a situation where the re-searcher must make a decision about the function-ality that he/she wants the robots to actually pos-sess. Emphasis may be on having all robots possessthe same functionality, or it might be desired thatthe robots possess the maximal functionality pos-sible. Choosing the latter, while understandable,causes more heterogeneity than the former�, andhence possibly exacerbates future problems similarthose items discussed above.SuggestionsThe single most important suggestion that we canmake to researchers is that they reduce the amountof heterogeneity in the robots that they work with.Heterogeneity between robots is probably the singlelargest source of problems, e�ort, and grief encoun-tered while working on research. Eliminating all dif-ferences between robots would be ideal, of course, butis not always possible. Robots from di�erent manu-facturers will certainly have di�erences in innate char-acteristics, as will di�erent models of robots from thesamemanufacturer, as will even the same model robotfrom di�erent years. However, these di�erences canbe eliminated at some level of abstraction, and it isour suggestion that an e�ort should be made to ac-complish this.For example, if two robots di�er in their low{levelmotion control functions, a set of higher level func-tions can be built on top of these commands thatremoves the robot{dependent aspects. Code writtenusing this new set of functions can then be readilyported between robots.Of course, dealing with heterogeneity is an interest-ing research topic, and is therefore necessary in somesituations. But it is our belief that it is much easierto introduce di�erences in robots by disabling func-tionality or changing parameters (as examples) thanit is to eliminate or reduce di�erences.CommunicationWhen we talk about communication among robotswe mean the intentional act of trying to convey infor-mation. And, while communication may not explic-itly be used by some researchers,1,11,13,15 it is verycommon.5,8,12,14 Communication between robots ismost commonly accomplished using some form of ra-dio frequency (RF) transmission, although it might�Unless all the robots are exactly the same in all re-spects, so that their maximal functionality is exactly iden-tical and all the software and hardware required to reachthis functionality can also be identical. If the robots arenot exactly the same, the heterogeneity will show up inthe software, at least, in order to achieve the same func-tionality, if this is even possible.3



eventually become possible to explicitly pass mean-ingful amounts of information by visual means. Teth-ers or other physical links will most likely not workexcept for robots �rmly �xed in place, such as roboticarms that are not on mobile bases.Communication can be accomplished in a num-ber of ways, including simple point{to{point andbroadcasting (ie. to all robots within range). Com-plex multibot communication networks can be con-structed, however, where robots may not only act asrecipients and originators of messages, but also as re-lays, helping pass messages between two other robots.As more robots interact, communication issues be-come more and more of an important issue.Communication issues are unique to multiple robotscenarios (if only because it generally does not maketoo much sense for a robot to send messages to itself);problems related to communications are therefore alsounique to multiple robots.y Through our endeavorsin multi{robot research, we have identi�ed a numberof the problems that seem to plague communication,and we have identi�ed some practical suggestions toat least reduce these problems. Some of the moresigni�cant problems are listed below:� Missing messages - messages never get to their des-tination.� Wrong messages - the wrong message is sent, anagent intercepts a message meant for another agentand mistakenly takes it to be for itself, or a messageheader gets corrupted in transmission and is sent tothe wrong agent.� Garbage contents - a messages information is cor-rupted to the point of uselessness.� Communications hardware failure - an agent su�erstotal loss of ability to communicate.� Transmission delays - A message's arrival is delayeddue to length of travel, number of relaying robots,etc.All of these problems are caused by RF noise eithercorrupting or overpowering the intended communica-tions. The magnitude of the problems one will faceis directly related to how noisy the RF environmentis in which the robots will be used, how robust thelow{level communications hardware and software is tocorruption (via error checking and correction, hand-shaking, etc.), and how robust the abstract coordina-tion mechanism is that the robots are using in orderto work together (higher level protocols, negotiationschemes, etc., if used at all).Some more abstract issues related to communica-tion, many of which have been studied in DistributedAI literate, include common knowledge, synchroniza-tion, and coherence. Working with real robots meansthat there is always a chance that a message will notbe received by the intended robot, or that if it is,yCommunication from a single robot to a base stationis pretty common these days, so those researchers that dothis will have some insight into multi{robot communica-tion problems.

that it is corrupted. Halpern and Moses,10 provethat the involved agents cannot be sure of achiev-ing common knowledge about anything that requirescommunication in such situations. Synchronizationof agents is related to this in that, quite often, com-munication is used by the agents to reach a commonpoint in time at which they know each other's \state"(and can then go on to perform coordinated activities,guaranteed non{interfering actions, etc.)16,17 Syn-chronization is usually only possible, however, whencommonknowledge of every involved agents' state ex-ists so that they can realize when synchronization hasbeen achieved. Coherence deals with coordinatingagents having compatible and non-contradictory in-formation. Coherence can be achieved through com-munication of the data itself, supporting or con
ictingevidence, etc. so that each agent eventually believescompatible information.Of course, if the interacting robots are unconcernedwith explicitly coordinating with other agents theywill most likely not communicate (as in1), and there-fore not reason about these communications{relatedissues.SuggestionsSolutions to deal with communication problems arepretty commonplace. Technical solutions for theseproblems include retransmission of messages, seman-tic message content checks, acknowledged messages,periodic con�rmation of activity (\I'm alive!") mes-sages, addressed messages, and robust error detectionand correction protocols, among others. Di�erenttechniques are necessary for variations of domain, ap-plication, robot organization, environment, etc. Forinstance, in extremely noisy environments it might benecessary to employ error detection and correctionmechanisms, retransmission of messages, and hand-shaking protocols. When the robots are prone to fail-ure, but the environment is noise{free, using simplecommunication protocols might su�ce, but periodicmessages from agents indicating that they are func-tioning might be useful. In general, design in com-munication overkill. Buy high power, 
exible, highquality communication hardware. Determine whatwill be the worst possible environmental noise thatthe robots will face, and then employ techniques dis-cussed above for environments twice as noisy.Planning, Organization, and Task decompositionIssues related to planning, organization, and taskdecomposition, among other abstract multi{agent is-sues, are beyond the scope of this paper, and muchresearch has been conducted on these topics in theDistributed AI �eld. See \Readings In DistributedArti�cial Intelligence"2 for a collection of papers deal-ing in detail with these issues. What should be men-tioned here, however, is that each of these issues may,in some manner, be a�ected by the issues discussedin the rest of this paper. Some examples are givenbelow:� Heterogeneity - Multiagent planning routines willhave to be modi�ed to deal with heterogeneous4



robots in order to model each of the robots' indi-vidual characteristics. As the robot's might di�erin any of a number of ways, this mightmean addinga large amount of complexity to the planner. Or-ganization(s) of robots will be less 
exible than forhomogeneous robots, as each agent may not be ableto ful�ll the responsibilities of every other agent inthe organization. Much like the planning system,task decomposition might be much more complexin order to account for the di�erences in the robots.� Communication - Communication issues can be ex-pected to work with the equipment and protocolsthat are going to be used, what type of task de-composition makes the most sense given the envi-ronment and domainReal World and Simulation IssuesWorking with robots in the real world may, at �rstglance, seem to be an easy extension of similar re-search performed in simulation. And, while simu-lators are good for testing theories, debugging de-signs, or just running tests due to environmental con-straints, a simulator may give the false impressionthat the real world is simple and predictable. How-ever, the world is not exact, and is much more com-plex then any simulator can realistically model. How-ever, they should not be considered satisfactory mod-els in which to completely design and develop algo-rithms and paradigms destined for real{world roboticapplications. Toward this end, some researchers havetotally foregone the use of simulators, and have optedto use the world as its own model.3 We should onlyrely on simulators to help us prepare a robot for thereal world. Though we agree that simulators can bea valuable tool to supplement research with physicalrobots,18 at some point in the development cycle itwill become necessary to make the transition to thereal world. This may not be such an easy task forthere are many issues that need to be considered. Wedivide these issues into three categories. These are: is-sues that deal with the robot hardware and platform,issues that deal with robot sensors and actuators, andissues that deal with robot software.HardwareThe �rst issue, robot hardware and platform, is ar-guably the area with the most substantial di�erencesbetween simulation and the real world. Most simula-tors do not simulate real world events such as whenthe battery gets low, when computers and sensors ona physical robot fail or start to misbehave (usuallywithout one being aware of the fact), when motorsdegrade or burn out, or when gears or wheels slip orbreak. There is a great amount of hardware, all ofwhich, usually, has to work 
awlessly. There is hard-ware to control the motors, hardware to control thesensors, and usually a central computer. There is alsominor hardware appliances such as batteries, powerconverters, actuator circuitry, and monitors that mayneed to be on board.An issue that may be overlooked quite often is theactual space requirements of sensors and other hard-

ware on a robot. While a simulator may simulatethe functionality of each of the physical components,it probably does not simulate how to place all thesecomponents onto a robot base while keeping it sta-ble, usable, and accessible. Robots in a simulator willhave an array of simulated sensors, perhaps coveringa gamut of modalities such as sonar, vision, rangeimaging, structured light, and infrared. The robotsmay have to communicate with each other. They mayhave manipulators of various sorts. A simulator maypermit a all of these capabilities on a robot withoutconsideration to the practicality of doing so.The type of robot platform or base that the robotis built on will is another important issue to consider.If a base is purchased from a manufacturer, one maynot need to worry about the base design, but onedoes need to worry about the ability to add hard-ware and software to the robot (i.e. change the non-innate features). Consideration must also be givento such details as the base drive design, which cantake a wide variety of forms, from di�erential driveor synchro{drive, to a tricycle{like or car{like design.The di�erent drive systems may mandate some designdecisions on the type and use of sensors, the type ofrobot control software used, the planning system, etc.Power constraints are another serious issue oftenoverlooked when dealing with real robots. A greatdeal of a robot's life is spent charging its batteries,the more so if it is heavily loaded with sensors, ac-tuators, and other electrical equipment. Also, thesize and number of batteries restricts the amount ofpower (current) available, strictly limiting the amountof electrical equipment that may run concurrently onthe robot. Even when within this limit, the batterylife of a robot is determined by the load on its batter-ies while running. A robot that must operate over along period of time must therefore have a light com-plement of electrically driven sensors, actuators, andother electrical equipment.SensorsThe second issue to consider are the sensors thata robot might use in the real world. One must con-sider the kinds of sensors that will be necessary for therobot to perform its task and how many sensors therobot is going to need. A simulator can only approx-imate the data returned from a sensor based uponits internal sensor model. The more accurate or com-plex the sensor , the more sophisticated the model willhave to be. As an extreme point of view, it may not bepossible to realistically simulate real sensors (exceptperhaps extremely simple sensors like limit switches)in a simulator due to the complexity and uncertaintyof the real world. No one can can anticipate all ofthe possible ways that a sensor may fail and/or err.Problems that can (and do) occur include camerasthat are not calibrated to speci�cations, lenses thatare dirty or misaligned, sonars with shorted circuitry,incorrect sensor values due to low input voltage, andmotor decoders that perform di�erently than speci-�ed or degrade in performance over time.Another issue to consider is whether the sensors5



modeled in simulation return realistic data. For ex-ample, a simulated robot may have a sensor that canreturn the identity of a nearby human. But, one mustask, is there a sensor in the real world that can dothat? Perhaps, but probably only at the cost of agreat deal of design and implementation e�ort, andprobably one that is quite fallible.SoftwareIt may be quite a formidable task to track downa software error on a real robot. In a simulator, theonly place an error would normally arise would be inthe user developed code. In the real world, one alsohas to consider that an error that might cause therobot to fail or perform di�erently from the simulatormay be the result of a sensor failure, low battery, com-puter failure, cable problem, or some other seeminglyunrelated cause.Depending upon how carefully the software was de-signed with the real world in mind, the software runin simulation will most likely run in the real world.When tested in the real world, however, one may �ndthat algorithms need to be changed, libraries modi�edor rewritten, parameters changed, etc. When makingthe transition to real robots, one must also considerthe size of the software and speed of the robot's pro-cessor. Porting code to a minirobot will require greatcreativity if the software was developed on a Cray su-percomputer and requires 128 megabytes of memory.Due to the increased complexity of the real world withrespect to that in a simulated model, robot tasks willalways be harder than that faced in a simulator. Itmay require more subtlety or complexity in the plan-ning and control software, more sensors and compu-tational resources, or integration of software not in-cluded in the simulator model, to accomplish even asimple task.SuggestionsTo ease the transition of a robot design from a sim-ulator to the real world we o�er several suggestions.� Expect that some additional code will be neededon the physical robot. Some helpful test programsthat will test each component to assure that it isworking properly, whether it is a sensor or a sub-routine, will be useful. After three weeks of runninga camera, for example, it may have been bumpedout of alignment or had its aperture closed so thatit is causing strange and unexpected results in therobots behavior. Hardware problems can have verymisleading symptoms and it is good to have testprograms that can easily rule out simple causes.And always check connectors, as they are apt tobecome disconnected. This is a very common prob-lem, as everything on the robot uses cables (cam-eras, disk drives, monitors, keyboards, etc.) andsimply the vibration caused by the robot movingaround is enough to loosen cables.� A useful place to look when a problem arises isthe battery. A low battery may cause errors thatdid not previously exist and be of a type that hasnever been encountered before. A robot may work

correctly for months and then develop unexpectederrors because the battery is running low.� It always helps to work in stages. Test each compo-nent and routine as it is moved from the simulatorto the real robot(s).� Document the errors that are encountered. Onedoes not want the next person working on therobot(s) to repeat the same mistakes.� Last of all, always have a remote emergency robotstop button handy, especially for large robots.Some robots can move very fast and weigh severalhundred pounds, and may unexpectedly go out ofcontrol.It may seem that the task of transitioning a robotdesign from a simulator to the real world will be quitesimple and straightforward. There are many issuesthat need to be considered. There will always be un-expected problems to deal with, but a user that isprepared and considers the issues mentioned abovemight ease the transition.ExamplesWe recently worked on a couple of projects thatinvolved the cooperative interaction of two heteroge-neous indoor mobile robots. One project, involvingexploration and navigation of an o�ce{like environ-ment, was implemented with some care and consid-eration to the issues described in this paper, but wasso beset by problems that it failed to be completedwithin a hard time deadline and was never fully im-plemented. Another project, where the robots had topush boxes across an obstacle strewn 
oor, was im-plemented extremely quickly and serves as an excel-lent example of where failure to implement accordingto the suggestions above resulted in a very brittle,failure{prone, and frustrating multibot system butwhich, with some e�ort to resolve the problems us-ing the suggestions in this paper, can become muchmore robust and successful.Dynamic DuoOne of the two robots involved in these projects isCARMEL, a mobile robot based upon a Cybermo-tion K2A mobile platform. BORIS, the other robotused in the projects, is based upon a TRC Labmateplatform. These robots are shown in Figure 2. Themajor innate di�erence between the platforms lies pri-marily in the motion characteristics - CARMEL isessentially holonomic, being able to move in any di-rection at any time without �rst having to turn itsbody, while BORIS must �rst turn to face the direc-tion of travel before moving. Hardware di�erencesother than those of the platform itself consisted ofsubstantially di�erent sonar rings (CARMEL has acircular ring of sonars, BORIS only has sonars facingin the forward direction), di�erent CPUs (not only dothey have IBM 80486 compatibles with di�ering char-acteristics, but CARMEL had an IBM XT compatiblerunning the sonar system that BORIS does not have),and di�ering vision systems (CARMEL has a cameramounted on an independently rotating table, while6



Figure 2: CARMEL (left) and BORIS (right),robots used in several multibot projects.BORIS's camera is �xed to BORIS's top facing di-rectly ahead of BORIS.) Low level functionality, wassimilar, but the robots had di�erent implementationsof some basic functions, such as obstacle avoidance.ExplorationOne of the events in the National Conference ofArti�cial Intelligence's '93 robot competition was toautonomously explore an \o�ce" environment look-ing for a visually tagged object, which was then to bedelivered to a predetermined room in the o�ce com-plex. Walls in the \o�ce" were three foot high panelsof sonar{re
ecting plastic and arranged to form roomsand halls. Each entry's robot was placed within theo�ce without knowing where within the o�ce it wasor in which direction it faced. However, the robot(s)were told in which quadrant of the o�ce environmentthey started. And each robot was given mostly ac-curate knowledge of the o�ce layout with respect towall placement and metric measurements; the actualo�ce layout could di�er from the map in that somedoors could appear where not indicated on the map,and some doors on the map could disappear.While most entries were single robot approaches,which we also tried with CARMEL, we attempted amultibot approach (both BORIS and CARMEL) aswe saw a distinct advantage in exploring the o�cein parallel with two cooperating robots. However,while CARMEL was already a fully autonomous mo-bile robot, with obstacle avoidance and vision systemsand a great deal of experience in research and robotcompetitions,4 BORIS was initially only a bare TRCLabmate robot base upon which a small amount ofobstacle avoidance research had been performed. Werealized from the onset that we should attempt to de-sign BORIS to be as functionally similar to CARMELas possible.A great number of engineering changes had to bemade both in hardware and software to accommodate

the many di�erences in the two robots. An exam-ple is the feature detection algorithms used to detectthe various con�gurations of \o�ce" halls and open-ings. The same basic sonar{based obstacle avoidancesystem was pre{existent in the robots before devel-opment started, so that including algorithms to per-form feature detection seemed straightforward. Thetwo robots had very di�erent implementations of thesonar system, however, which made porting of the al-gorithms developed on one robot to the other robotextremely time consuming and is perhaps the singlemost important factor in the di�culty we had im-plementing the multibot approach. In addition, thesonar hardware di�erences (complete vs. partial ringsof sonars) require BORIS to rotate in certain situ-ations when CARMEL does not have to, requiringmodi�cations to some low{level functions as well asthe planner. Parameters in the sonar system also hadto be �ne{tuned to each robot to account for di�er-ences in the robot's size, sonar �ltering system imple-mentation, and other factors, and we were never ableto perfectly match the results of the two robots.zBox pushingThe box pushing task at the AAAI '93 robot com-petition involved locating boxes (marked with distinc-tive visual tags) and moving them into a prede�nedpattern while avoiding obstacles (boxes that were notto be moved). Because a robot pushing a box cannot\see" with its sonars and therefore cannot performobstacle avoidance, this meant that one robot eitherscout out a clear path beforehand and then go backand get the box, or that two robots help each other,with one robot acting as the navigator and one robotpushing the boxes. We chose to implement the multi-bot design, which made the design more challenging,di�cult and, as we found out, frustrating.Our approach to the task was to use CARMELas the \Boss", or navigator, and BORIS as the\Worker", or box pusher. This task assignment wasmade because BORIS is built upon a square base,making it more conducive to pushing boxes thanCARMEL, which has a cylindrical base. It was im-portant that each robot have some shared knowledgeof the world to properly navigate around the arena;for CARMEL to act as the navigator and tell BORISwhere to push boxes, it was necessary that each robotinitially knew where the other one was located in aglobal coordinate system. Each robot also had an in-ternal map of the arena indicating the boundaries andthe single interior wall. Obstacle and object locationswere not known beforehand.The interaction of the robots in this task was de-�ned as follows:The robots �rst job was to synchronize themselvesusing a sequence of handshaking messages. Once syn-chronized, BORIS would drive to one of a numberzFurther rami�cations of the di�culty experiencedwith implementing the multibot approach was that devel-opment of the single robot technology was slowed a greatdeal due to the \thinned" person{power of trying to bringtwo robots up to competition speed instead of only one.7



of predetermined viewing positions in the arena andlook for boxes. If it found one (or more) it would ap-proach it, stop just before the box, and communicateits location and orientation to CARMEL. Meanwhile,CARMEL would be waiting at its initial location untilit received this message. CARMEL would travel to alocation in line with the goal point where the box wasto be dropped o� and a few meters in front of BORIS'sposition. CARMEL would then travel in three me-ter segments to the goal point while avoiding obsta-cles. At each of these via{points, CARMEL wouldsend its current position to BORIS as an obstacle{safe position. BORIS would attempt to move betweenthese points in such a way as to keep the box securelyin front of it (using relatively slow, wide turns) andwould \follow the leader" to the point that the boxwould be placed. Because CARMEL moved in suchsmall increments, the hope was that BORIS's pathbetween via{points would keep it away from obsta-cles. Once CARMEL reached the box dropo� loca-tion, it would then move a safe distance away andwait for BORIS to �nd another box. BORIS wouldcontinue to push the box until the �nal location wasreached. Free of the hindrance of the box, BORIScould then use its own obstacle avoidance system tomove to the next viewing position and search for thenext box.As expected all did not work out the way it wasplanned. There were some problems encountered,some with BORIS, some with CARMEL, and somewith the cooperative aspects of the task. BORIS'sproblems began with its vision system. On the initialattempt, the camera BORIS was using to locate boxeswas pointed too low. As it turned out, the boxes weused for testing the robots were upside{down com-pared to the ones actually used in the arena, causingthe tags on the boxes to be higher than the cam-era could see. BORIS moved from box to box, notrecognizing anything, while CARMEL sat motionlesswaiting for a message from BORIS. After approxi-mately �ve visual scans, BORIS su�ered an unex-plained lockup and we had to restart. We �xed thecamera angle on BORIS and tried again.On the second run, BORIS located the box cor-rectly, approached it and transmitted a messageto CARMEL communicating he was ready for the`bosses' orders. CARMEL's map had been initial-ized improperly, so CARMEL thought that it was onthe opposite side of the arena. It moved to the cor-rect location in its own map where it thought BORISwas, not to where BORIS actually was, and plottedout a path to the goal position. The map error re-sulted in a large discrepancy in positions, however,and the resulting path was useless. Unaware of this,CARMEL then sent the command to BORIS tellingit to proceed. CARMEL proceeded to move alongits planned path toward the phantom goal destina-tion, sending position messages that were uncorre-lated with BORIS's map. BORIS, also unaware ofthe problem, started to execute the navigation pathtransmitted from CARMEL, but started to drive inthe wrong direction and we had to start over again.

On the third and �nal run, the situation improvedslightly. The robots synchronized, BORIS immedi-ately found a box, CARMEL acknowledged the com-munications, moved in front of BORIS and the box,and traversed an obstacle{free path for BORIS totravel. CARMEL moved a safe distance away fromthe box drop o� position and waited for BORIS tocomplete its pushing. However, at some point inthe transmission of the initial path via{point fromCARMEL to BORIS the message was corrupted andvalues for parameters were radically in error. Thiscaused BORIS's control program to crash and hang,leaving both robots hanging.While implementing the design for this project weran into a number of issues discussed in this paper.Because we were able to actually implement and per-form this task, we encountered both issues like thoseencountered during the exploration task as well asrun{time and coordination issues that we did not havean opportunity to discover in the abortive attemptat the exploration task. Communication related is-sues �gured quite prominently among those we raninto. Both during development and actual competi-tion runs we experienced delays, losses, and corrup-tion of messages sent between the robots. Because ofthe short time period in which we implemented ourdesign (approximately 24 hours), we were unable tobuild in many of the safeguards recommended above.We successfully synchronized the robots using a setsequence of messages between the robots. We didnot, for example, implement any form of semanticcontents checking to detect invalid messages. Nor didwe implement high{level retransmissions of messagesif an expected response from the other robot neverarrived. Heterogeneity in hardware did not surfaceas a signi�cant issue for this task, primarily becausewe used the robot's heterogeneity to best advantage,we were not trying to achieve equivalent functional-ity, and the robots were to work have di�erent taskresponsibilities. Software was more of an issue for theexact same reasons; we had to develop entirely dif-ferent control software for each robot and could notdevelop software on one robot and port it to the other.Future WorkThe examples above give vivid accounts of theproblems likely to be faced by researchers workingwith multiple real robots. We continue to be inter-ested in multibot systems and applications, despitethe extra e�ort that such work entails. The nextmajor project is to develop a team of cooperatingoutdoor robotic vehicles (new military jeeps calledHMWMMV's, or \Hummers") that can perform atask such as forward reconnaissance. We have de-signed and built one prototype vehicle (MAVERIC)based upon an electric utility cart, with which we cando development and experimentation without requir-ing access to the large and costly Hummers. Whenbuilding another vehicle { to develop the multiplerobot coordination technology necessary for this typeof task { we will pay great attention to the issuesraised in this paper. First and foremost, we will8



try to make the two vehicles as identical as possi-ble. This will most likely entail out�tting the secondvehicle in exactly the same manner as MAVERIC inmany aspects. It will also probably require upgrad-ing MAVERIC with improvements, based upon ourexperience with MAVERIC and discovery of short-coming in its design or implementation, that will beimplemented from the onset on the new vehicle.We would also like to explore using minimal re-sources on multiple minirobots to perform coopera-tive tasks. The robots that we are using are basedon the MIT miniboard and use an MC6811 micro-controller. While computing power and controllingsoftware are the same for each of the robots, theremay be some small variations in the bases and sen-sors. The general idea is to use the ideas we havediscussed here to help design robust multiple robotsand apply them in the real world.ConclusionsA great deal of research has been performed re-garding how we can get multiple agents cooperatingtogether in wondrous harmony. Much of this researchhas not, as yet, involved working with the agents thatwill actually end up doing the work, robots. A re-searcher who has not already attempted this technol-ogy transfer is in for a lot of headaches unless he or shehas some insight to the issues that are associated withsuch a process. We have introduced and discussedthe most signi�cant issues and their causes, and havegiven many suggestions on how to deal successfullywith them. A great deal of work and aggravation canbe avoided by paying attention to these issues beforeimplementation of a system on real robots. We havedescribed the problems and solution faced when im-plementing two multibot projects in particular in or-der to fully illustrate what might occur during imple-mentation, and accentuate the importance of payingheed to the issues raised in this paper.References[1] Ronald C. Arkin. Cooperation without commu-nication: Multiagent schema{based robot nav-igation. Journal of Robotic Systems, 3(9):351{364, 1992.[2] Alan H. Bond and Les Gasser. Readings in Dis-tributed Arti�cial Intelligence. Morgan Kauf-mann Publishers, San Mateo, CA, 1988.[3] Rodney A. Brooks. A robust layered controlsystem for a mobile robot. IEEE Journal onRobotics and Automation, RA-2(1):14{22,March1986.[4] Clare Congdon, Marcus Huber, David Ko-rtenkamp, Kurt Konolige, Karen Myers, Alessan-dro Sa�otti, and Enrique Ruspini. CARMEL vs.
akey: A comparison of two winners. AI Maga-zine, 14(1):49{57, Spring 1993.[5] Gregory Dudek, Michael Jenkin, Evangelos Mil-ios, and David Wilkes. On the utility of multi-agent autonomous robot systems. In WorkingNotes: Workshop on Dynamically Interacting

Robots, pages 101{108, Chambery, France, Au-gust 1993. Proceedings of the Thirteenth Interna-tional Joint Conference on Arti�cial Intelligence.[6] Edmund H. Durfee and Victor R. Lesser. Us-ing partial global plans to coordinate distributedproblem solvers. In Proceedings of the TenthInternational Joint Conference on Arti�cial In-telligence, pages 875{883, Milan, Italy, August1987. (Also published in Readings in DistributedArti�cial Intelligence, Alan H. Bond and LesGasser, editors, pages 285{293, Morgan Kauf-mann, 1988.).[7] Eithan Ephrati and Je�rey S. Rosenschein. Con-strained intelligent action: Planning under thein
uence of a master agent. In Proceedings of theNational Conference on Arti�cial Intelligence,July 1992.[8] Michael George�. Communication and inter-action in multi-agent planning. In Proceedingsof the National Conference on Arti�cial Intelli-gence, pages 125{129, Washington, D.C., August1983. (Also published in Readings in DistributedArti�cial Intelligence, Alan H. Bond and LesGasser, editors, pages 200{204, Morgan Kauf-mann, 1988.).[9] Michael George�. A theory of action for multi-agent planning. In Proceedings of the NationalConference on Arti�cial Intelligence, pages 121{125, Austin, Texas, August 1984. (Also pub-lished in Readings in Distributed Arti�cial Intel-ligence, Alan H. Bond and Les Gasser, editors,pages 205{209, Morgan Kaufmann, 1988.).[10] Joseph Y. Halpern and Yoram Moses. Knowl-edge and common knowledge in a distributed en-vironment. In Third ACM Conference on Prin-ciples of Distributed Computing, 1984.[11] Marcus J. Huber and Edmund H. Durfee. Planrecognition for real-world autonomous agents:Work in progress. In Working Notes: Applica-tions of Arti�cial Intelligence to Real-World Au-tonomous Mobile Robots, AAAI Fall Symposium,pages 68{75, Boston, MA, October 1992. Amer-ican Association for Arti�cial Intelligence.[12] Kouji Ishioka, Kazuo Hiraki, and Yuichiro An-zai. Cooperative map generation by hetero-geneous autonomous mobile robots. In Work-ing Notes: Workshop on Dynamically Interact-ing Robots, pages 58{67, Chambery, France, Au-gust 1993. Proceedings of the Thirteenth Interna-tional Joint Conference on Arti�cial Intelligence.[13] Maja Mataric. Synthesizing group behaviors. InWorking Notes: Workshop on Dynamically In-teracting Robots, pages 1{10, Chambery, France,August 1993. Proceedings of the Thirteenth In-ternational Joint Conference on Arti�cial Intelli-gence.[14] Ei-Ichi Osawa. A scheme for agent collaborationin open multiagent environments. In Proceed-ings of the Thirteenth International Joint Con-ference on Arti�cial Intelligence, pages 352{359,9



Chambery, France, August 1993. Proceedings ofthe Thirteenth International Joint Conference onArti�cial Intelligence.[15] Lynne Parker. Learning in cooperative robotteams. InWorking Notes: Workshop on Dynam-ically Interacting Robots, pages 11{23, Cham-bery, France, August 1993. Proceedings of theThirteenth International Joint Conference on Ar-ti�cial Intelligence.[16] Je�ery S. Rosenschein. Synchronization of multi-agent plans. In Proceedings of the National Con-ference on Arti�cial Intelligence, pages 115{119,Pittsburgh, Pennsylvania, August 1982. (Alsopublished in Readings in Distributed Arti�cialIntelligence, Alan H. Bond and Les Gasser, edi-tors, pages 187{191, Morgan Kaufmann, 1988.).[17] Christopher J. Stuart. An implemenation ofa multi-agent plan synchronizer. In Proceed-ings of the Ninth International Joint Conferenceon Arti�cial Intelligence, pages 1031{1033, LosAngeles, California, August 1985. (Also pub-lished in Readings in Distributed Arti�cial Intel-ligence, Alan H. Bond and Les Gasser, editors,pages 216{219, Morgan Kaufmann, 1988.).[18] Mark C. Torrance. The case for a realistic mo-bile robot simulator. In Working Notes: Ap-plications of Arti�cial Intelligence to Real-WorldAutonomous Mobile Robots, AAAI Fall Sympo-sium Series, pages 181{184, Cambridge, Mas-sachusetts, October 1992. American Associationfor Arti�cial Intelligence.

10


