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ABSTRACT

This paper describes the design and implementation of an integrated system for combining obstacle avoidance,

path planning, landmark detection and position triangulation. Such an integrated system allows the robot to move

from place to place in an environment, avoiding obstacles and planning its way out of traps, while maintaining

its position and orientation using distinctive landmarks. The task the robot performs is to search a 22m X 22m

arena for 10 distinctive objects, visiting each object in turn. This same task was recently performed by a dozen

di�erent robots at a competition in which the robot described in this paper �nished �rst.

1 INTRODUCTION

Many mobile robots systems can plan paths and avoid obstacles. Many other systems use vision to detect landmarks

and triangulate their position. Few mobile robot systems combine obstacle avoidance, path planning, landmark

detection and triangulation within a single, working architecture that performs tasks in a dynamic world. Such an

integrated system would move from place to place in the world, avoiding obstacles and planning its way out of traps,

while maintaining its position and orientation using distinctive landmarks, whose positions were not prior knowledge.

This paper describes the design of such a system and its implementation on an actual mobile robot.

1.1 Task description

The task our robot performs is to explore an up to 22m X 22m arena searching for 10 distinctive objects (which

were also the landmarks) and then visit each of the objects. Visiting was de�ned as moving to within two robot

diameters of the object. Our robot had 20 minutes to perform this task. This task was one stage of a three stage

robot competition held at the National Conference for Arti�cial Intelligence in San Jose California in July 1992. A

dozen robots participated in the competition, with the system described in this paper �nishing �rst. For more details

on the competition rules and scoring see [6].

The arena boundaries were de�ned by walls, and the arena oor was strewn with obstacles (cardboard boxes).

Objects were ten foot tall, three-inch diameter poles. To each pole we attached an omni-directional, barcode tag,

which allowed our computer vision system to distinguish one pole from another (see Section 2.3). The objects could

be seen above the obstacles, while the clearance between obstacles was a minimum of 1.5m. See Figure 1 for a

diagram of the arena.

1.2 Robot description

Our robot is a Cybermotion K2A named CARMEL (Computer Assisted Robotics for Maintenance, Emergency and

Life Support). CARMEL has three synchronously driven and steered drive wheels. The body of CARMEL does not

turn with the wheels. For sensing, CARMEL has a ring of 24 Polaroid sonar sensors and a single, black and white
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Figure 1: Diagram of the competition arena. Objects are drawn slightly larger than scale.
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Figure 2: CARMEL's system architecture. Gray boxes are data structures, ovals are sensors, boxes are routines and

arrows represent the ow of information.

CCD camera. The camera is mounted on a rotating table that allows it to rotate 360 degrees independently of robot

motion. For computing, CARMEL has three processors: one controls the drive motors, one �res the sonar ring and

the third, a 486-based PC clone, executes all of the high-level modules described in this paper. This latter computer

also has a framegrabber to allow for image acquisition. All computation and power is contained entirely on-board.

1.3 Overview

CARMEL's software architecture is arranged hierarchically (see Figure 2). At the top-level is a supervising planner

that decides what the robot should do next and then calls appropriate sub-modules. The next level are sub-modules

for moving the robot, planning global paths, determining the robot's position in a world coordinate system, and

�nding objects. The movement sub-module contains two sub-routines: one to compute the robot's current location

using the wheel encoders and another to avoid obstacles using the sonar sensors. Two main data structures contain

information about the world. One holds a certainty grid of obstacles constructed from the sonar sensors; this is used

by the path planning and obstacle avoidance routines and is constructed and maintained by the obstacle avoidance

routines. The second data structure contains the locations of objects as determined by the vision routines and is

constructed and maintained by the supervising planner. These two sets of data, although represented in the same

coordinate system, remain independent and are never fused. Robot motion (driving and steering) is controlled by

the obstacle avoidance sub-routine. Camera motion (i.e., the rotating table) is controlled by the supervising planner.

The rest of this paper will briey describe each sub-module and then detail how the supervising planner integrates

all of them to perform the required task. Finally, the system is evaluated by analyzing its performance over many

experimental runs in di�erent environments, including the winning run during the actual competition.



Figure 3: Left �gure is CARMEL and an environment. Right �gure shows CARMEL's Histogram Grid of obstacle

locations after moving from Start to O.

2 SUB-MODULES OF THE ARCHITECTURE

CARMEL's architecture is highly hierarchical. There are many sub-modules that the planner can call to accomplish

various tasks. This section gives a brief description of each sub-module and the task it performs.

2.1 Obstacle avoidance

Obstacle avoidance on CARMEL is done solely with its sonar sensors and has two components: (a) a unique method

for detecting and rejecting noise and crosstalk with ultrasonic sensors, called error eliminating rapid ultrasonic �ring

(EERUF) [4]; and (b) an obstacle avoidance method called the vector �eld histogram (VFH) [2, 3].

The innovative feature of EERUF is its ability to detect and reject ultrasonic noise caused by other mobile

robots in the environment, or by crosstalk (a phenomenon where one sensor receives the echo from another), caused

by CARMEL's own sensors. Since EERUF dramatically reduces the problem of crosstalk, CARMEL can �re its

ultrasonic sensors at a rate of 160 ms per sensor, two to �ve times faster than in most other mobile robot applications.

This faster �ring rate is a crucial factor that allows CARMEL to react in time to unexpected obstacles, even when

traveling at high speeds (up to 780 mm/sec).

To map the obstacles in the environment, CARMEL uses another innovative approach called a Vector Field

Histogram (VFH). The VFH method uses a two-dimensional Cartesian grid, called the Histogram Grid (illustrated

in Figure 3), to represent data from ultrasonic (or other) range sensors. Each cell in the Histogram Grid holds a

certainty value that represents the con�dence of the algorithm in the existence of an obstacle at that location. This

representation was derived from the certainty grid concept that was originally developed by Moravec and Elfes in [8].

In the Histogram Grid, certainty values are incremented when the range reading from an ultrasonic sensor indicates

the presence of an object at that cell. Based on data in the HistogramGrid, the VFH method creates an intermediate

data representation called the Polar Histogram. The spatial representation in the Polar Histogram can be visualized



Figure 4: The Polar Histogram (left) has \mountains" in the direction of obstacles. CARMEL is steered toward a

\valley" in the direction of the target. Right �gure shows the same Polar Histogram in polar coordinates.

as a mountainous panorama around the robot, where the height and size of the peaks represent the proximity of

obstacles, and the valleys represent possible travel directions (see Figure 4). The VFH algorithm steers the robot in

the direction of one of the valleys, based on the direction of the target location.

2.2 Global path planning

In addition to VFH, CARMEL uses a global path planner that searches the Histogram Grid created during obstacle

avoidance and creates a list of via points (intermediary goal points) that represents the shortest path to the goal.

The algorithm was developed at the Oak Ridge National Laboratory and reimplemented on CARMEL [1]. The

algorithm �rst expands each occupied cell of the Histogram Grid by half the robot diameter. Then a potential �eld

proportional to the distance from the start to the goal is computed. A gradient descent is performed from the start

position to the goal and via points are selected whenever the slope of the path changes. This algorithm is very quick,

taking less than one second to run on a grid size of 256 X 256 cells (each cell represents 20 cm in the environment).

The speed of the algorithm lets it run on-the-y to extract CARMEL from potential trap situations.

2.3 Visual cue detection

Objects (10 ft. poles in our environment) were tagged with an omni-directional barcode to facilitate detection. The

object tag design used for CARMEL consists of a black and white stripe pattern placed upon PVC tubing with a

four inch diameter, allowing the tags to be slipped over the object poles. An example object tag is shown in Figure

5. The basic stripe pattern is six evenly spaced horizontal black bands of 50 mmwidth, with the top of the top band

and the bottom of the bottom band spaced 1000 mm apart. The white gaps between the black bands correspond

to the bit positions in a �ve-bit word. A white space between two bands corresponds to an \o�" bit, while �lling

the space with black corresponds to an \on" bit. The �ve bits between the six bands can then represent 32 unique

objects.

The actual algorithm for extracting objects from an image required no preprocessing of the image. The algorithm

makes a single pass over the image, going down each column of the image looking for a white-to-black transition

that would mark the start of a potential object. A �nite state machine keeps track of the number and spacing of

the bands. After �nding enough bands to comprise a tag the algorithm stores the tag id and pixel length. Once

a column is complete, the eligible objects are heuristically merged with objects found in previous columns. The
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Figure 5: Example object tags showing the basic pattern and objects with bit pattern of 0, 5, 10 and 17.

distance between the top of the top band and the bottom of the bottom band, in terms of the number of pixels in

the image, is then used to estimate the actual distance from the camera to the object. The algorithm has an e�ective

range of about 12 meters. See [7] for a detailed description and analysis of the vision algorithm.

2.4 Landmark triangulation

The method used on CARMEL for triangulation is based on circle intersection (see [5] for an overview of three-object

absolute-positioning algorithms). Given objects A, B, and C, a circle is formed with objects A, B, and the angle

between them as viewed from the robot, as shown in Figure 6. Because this angle is a relative measure, the known x

and y coordinates of the robot are not required. A second circle is formed similarly with objects B, C, and the angle

between them. The two circles intersect at two points: object B's location and the robot's location. Therefore, the

robot's location and orientation can be determined.

3 THE SUPERVISING PLANNING SYSTEM

The design of our planning system was motivated by several goals. First, and most importantly, we wanted to keep

the planner very simple. The hierarchical design eliminated many problems such as contention for resources between

sub-modules and lack of coordination between sub-modules. All scheduling was done through the top-level planner.

Second, we wanted the overall system to be extremely robust. Because, the competition rules prohibited outside

interference with the robots after they had started the task, the planner needed to handle even catastrophic errors

during run-time. Third, we wanted to use existing research as sub-modules. For example, the obstacle avoidance

routines we used had been developed over many years as stand-alone processes. We wanted to integrate them within

the framework of the task without substantial modi�cations. Finally, we wanted to develop and test each sub-module
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Figure 6: CARMEL's three object triangulation using the circles method.

independent of each other. This allowed several groups to work in parallel in developing the software system.

What emerged from these design goals was a strict hierarchy of modules with calls to each sub-module and

information exchange between each sub-module being completely controlled by a supervising planner. No sub-

module was allowed to run by itself and all sub-modules were guaranteed to return, even if they return an error

condition.

3.1 Overview

The planner has three primary tasks: 1) It has to decide what to do (i.e., which sub-module to call); 2) It has to

decide when to do it; and 3) It has to decide where to move the robot. The basic strategy for performing the task

described in Section 1.1 is for the planner to 1) tell the movement sub-module to move the robot to a particular

location where objects might be seen, 2) tell the vision sub-module to �nd all objects within a certain sweep area

(e.g., the 180 degrees in front of the robot), 3) tell the movement sub-module to approach the nearest object, 4) tell

the vision sub-module to verify the location of the object and �nally, 5) tell the movement sub-module to approach

nearer to the object if the robot is still too far away from it. These steps are repeated until all of the objects have

been visited. In some environments (such as the competition), steps (1) and (2) are repeated before beginning to

visit objects. This allows many objects to be placed in the map before dead-reckoning errors accumulate.

At any time during this cycle, the planner can decide that CARMEL has moved far enough so that it's dead

reckoning is probably in error. The planner then interrupts the cycle and directs the movement sub-module to

move the robot to a location from where it can see at least three objects, the minimumnumber needed to triangulate

position and orientation. The planner points the camera at each of the three objects, and asks the vision sub-module

to determine new headings to the three objects. These headings are passed to the triangulation sub-module. That

sub-module returns the new position and orientation of CARMEL, which the planner uses to update CARMEL's

internal position and orientation.

3.2 Error recovery

There are two major causes of errors that the planner has to deal with: 1) Errors in movement, whereby the

movement sub-module cannot move the robot to the position requested by the planner; and 2) Errors in object

location, whereby the vision sub-module cannot verify that the robot has moved to an object. Recovery from these

two types of errors is discussed in the following sub-sections.

3.2.1 Errors in movement

The movement sub-module can detect two types of movement errors: trap situations, such as U-shaped obstacles

and failures to attain the goal location. Traps are detected automatically by the obstacle avoidance algorithm. The

planner's solution to this error is to call the global path planner to plot a set of via-points that will lead the robot out

of the trap and to the goal location. The movement sub-module is then called with this list of via-points instead of

a single goal location. The movement sub-module guides the robot through each via-point.



Failure to attain the goal location is not detected automatically by the obstacle avoidance algorithm. The

algorithm was designed to repeatedly attempt to reach its goal location, running forever if necessary. Obviously,

this was not desirable, since the goal location could be located inside of an obstacle or behind a long wall. To force

the movement sub-module to terminate, the planner estimates how long it should take the robot to reach the goal

location. This time is passed to the movement sub-module and the sub-module stops the robot and returns when

this time limit is exceeded (or it has reached the goal location).

When the planner is informed of a failure to attain the goal location, it �rst determines if CARMEL is close

enough to the goal location so that no further action is necessary. `Close enough' varies depending on the situation.

For example, when CARMEL is just trying to take an image a few meters away may be close enough, but when

CARMEL is approaching within two robot diameters of an object, fractions of a meter are important. If the planner

determines that CARMEL is not close enough, the planner asks the movement sub-module to try again, maybe

the obstacle was only temporary. After repeated failures, the planner chooses a new goal location that will also be

suitable (such as the other side of the object) and starts the movement over.

3.2.2 Errors in object location

In the course of visiting an object, the planner will move CARMEL to a spot approximately three meters from the

object. At this point, the planner will request another image to verify the location of the object. It is this new

heading and distance that is used to make the �nal approach to within two robot diameters of the object; using this

new, robot-relative information reduces the reliance on dead reckoning. However, there may be situations when the

object cannot be seen from the veri�cation location. In this case, the planner rotates the camera left and right in

an ever-widening arc, searching for the object. If this fails, the planner assumes that CARMEL is too close to the

object to detect it (the vision system has a minimum range of one meter) and so it backs CARMEL up. If this fails

the object is assumed to be occluded and the planner chooses a new goal location on the opposite side of the object

and starts the veri�cation process over again.

4 RESULTS

An integrated system to perform a speci�c task has been described. In practice this system performed above

expectations. The decision to dedicate speci�c sub-modules to di�erent tasks paid o� handsomely at execution time.

Since sub-modules are encapsulated and guaranteed to return, they can have the entire resources of the computer

at their disposal, without needing to sacri�ce CPU time for the top-level planner. For the movement sub-module,

this results in movement that is fast and continuous, displaying none of the move-stop-move behavior of many other

robots at the competition. For the vision sub-module, this results in analysis of images that takes only a few seconds.

It also became apparent during the course of implementing the system, that the performance of each sub-module

a�ected the design of the supervising planner. In particular, the vision sub-module evolved over time and became

much more accurate and could extract objects at much greater ranges. This reduced the need for dealing with

uncertainty and error.

The system was tested over many runs in three di�erent environments, with the largest being 22m X 22m. Error

recovery routines for movement errors were tested by forcing CARMEL into traps. Error recovery routines for object

location errors were tested by manually moving objects after their positions had been recorded by the planner. In

practice, the error recovery routines for visiting objects allowed us to be less concerned with the precise position

of the robot, thus we didn't need to perform landmark triangulation as often. Since landmark triangulation is

time-consuming, requiring a movement and three images, the less often that it needs to be performed, the better.

In the actual competition, CARMEL found and visited all ten objects in just over nine minutes. This far

outpaced the competition, none of whom could complete the task in the allotted 20 minutes. During the competition,

CARMEL's maximum speed was set at 500 mm/sec, although it moved more slowly when approaching objects and

when avoiding densely packed obstacles. The planning system's error-recovery mechanisms were barely used, only a

few times did the camera need to pan in one direction or another to recover from vision and dead reckoning errors. In

the actual competition we did not use the landmark triangulation system. We felt that CARMEL's dead-reckoning

would be su�cient during the short amount of time that it took us to complete the task and we also had some last

minute di�culties with the code. The landmark triangulation routine was tested extensively both in simulation and

on actual runs of the robot prior to the competition.



4.1 Limitations

The most signi�cant limitation of the system described in this paper is that it cannot handle parallel tasks; one

sub-module must �nish before anything else can be done. An obvious example of when parallelism would be desired

is in positioning the camera so that it is pointing at the object while the robot is still moving towards the object. If we

use a single processor computer, we cannot overcome this limitation without sacri�cing our advantage in dedicating

the processor to sub-modules performing tasks, which would result in slower execution of some sub-modules. This

is a serious problem in the movement sub-module, as the less often the robot can re-evaluate the obstacles in

the world, the more slowly it has to move. If we use a multi-processor computer (or several connected computers)

the planner must be much more sophisticated in scheduling sub-modules and dealing with contention for resources.

Adding parallel task capability is an on-going research issue.

5 CONCLUSION

We have developed and implemented an integrated system of obstacle avoidance, global path planning, visual cue

detection and landmark triangulation on an actual mobile robot. The robot's task was to explore a 22mX 22m arena,

searching for and then visiting 10 objects. The system is rigidly hierarchical with a supervising planner controlling

all processing. The system proved itself in a competition held in July 1992, �nishing �rst out of a dozen competitors

performing the same task.
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