
Computer vision for CARMELMarcus J. Huber, Clint Bidlack, David Kortenkamp,Kevin Mangis, Doug Baker, Annie Wu, Terry WeymouthArti�cial Intelligence LaboratoryThe University of MichiganAnn Arbor, Michigan 48109{2110ABSTRACTIn this paper we discuss the implementation and uses of the object recognition system usedfor CARMEL, the University of Michigan's winning entry in the AAAI{92 Autonomous RobotCompetition. Following the rules of the competition, the robot was required to navigate within alarge, unstructured environment performing exploration, and then a directed search, for objectsplaced throughout the arena. CARMEL was completely autonomous and performed these tasks,in part, using computer vision techniques. The tasks required of the computer vision systemconsisted of actively searching for objects (four inch diameter tubes marked with black andwhite stripe patterns), detecting them in images, uniquely identifying each object based uponits distinguishing pattern, and determining each object's position from orientation and distanceestimates measured from the image. We brie
y describe the design of the various computervision algorithms that were developed to perform these tasks. Because of the accuracy androbustness of the vision system, we were able to perform absolute positioning, where the robotaccurately updated its position through backward triangulation from previously located objects.The success of CARMEL stemmed largely from the use and implementation of the vision systemto perform the tasks listed above. Other teams chose to approach these same tasks using di�erentsensory systems and/or techniques. We analyze the general approaches, looking at where theyexcelled and failed, in terms of their actual performance and in general, perhaps giving insightinto how to build autonomous robots that can successfully operate in \natural" environments.1 INTRODUCTIONThe University of Michigan's robot CARMEL (for Computer Aided Robotics for Maintenance,Emergency, and Life{support) was the winning entry in the 1992 National Conference on Arti�cialIntelligence's Autonomous Robotics Competition, sponsored by the American Association for Ar-ti�cial Intelligence. Ten entries competed against each other in a three stage contest spread overthree days. Following the rules of the competition, each robot was required to navigate within alarge, unstructured environment, avoiding all obstacles placed in the environment, and performingexploration, and then a directed search, for \objects" also placed throughout the environment.For large robots, the environment consisted of an octogonally shaped arena approximately seventyfeet across. Small robots operated in an environment approximately half that size. Clusters ofcardboard boxes were distributed throughout this space to act as obstacles. Also distributed in thearena were ten poles upon which to fasten the \objects" that each team was to �nd in the explorationand mapping phase of the competition. Each of the teams were permitted the opportunity to design



their own objects so as to not handicap any team by imposing perception characteristics, such ashaving to use a particular sensing modality. A complete description of the competition guidelines,competitors, and results can be found in [4]. In short, Stage 2 of the competition consisted ofexploring the arena looking for ten objects within a 20 minute time limit; Stage 3 consisted ofperforming a directed search for three of the objects found in Stage 2, in the order speci�ed byjudges at the beginning of the run.The structure of the paper is divided primarily into two sections. The �rst will describe ourparticular implementation of the sensing systems, particularly the computer vision system, and wewill explain the various design issues that we faced, and our solutions to them. The second sectionwill analyze our approach with that of the other teams in an attempt to discover why we performedso well and the other entries not quite so well.2 CARMEL2.1 General descriptionCARMEL is based upon a commercially available Cybermotion K2A mobile robot platform. It is acylindrical robot about a meter in diameter, standing a bit less than a meter high when equippedwith a large hollow shell (for holding electronics and other equipment) on top. It has a top speedof approximately 800 mm/sec and is driven by three synchronously driven wheels. CARMEL'shexagonal top is decoupled from these wheels, so that the orientation of the top is unchanged whenthe robot itself turns.While research has been conducted on CARMEL for the past �ve years, this research has con-centrated on the development of a fast, robust, and reliable sonar{based obstacle avoidance system.CARMEL was totally lacking any other sensing or high level planning system until work beganon the robot competition in January of 1992. For a more thorough description of the design andarchitecture of CARMEL, see [5].2.1.1 SensorsCARMEL's current suite of sensors are:� Odometry { Wheel encoders maintain the robot's position and orientation. Errors in theestimation of the distance traveled accumulates relatively slowly, and have a small impact onCARMEL's uncertainty in its position. Angular errors also accumulate slowly but have a greata�ect upon the accuracy of the robot's knowledge of where it is.� Sonar { There are 24 ultrasonic sensors evenly distributed around CARMEL's torso. Thesesensors have a range of approximately 2 meters, each scanning a cone about 30 degrees wide.The minimum �ring cycle for the set of sonar sensors is approximately 160ms. Crosstalk andexternal noise were detected and �ltered for greater reliability.� Vision { A grayscale CCD camera was added to CARMEL to give it visual capabilities. Whilecomputer vision can be very time consuming and di�cult, the long range sensing bene�ts faroutweighed any disadvantages. The vision routine, in conjunction with the object tags that wedesigned, allowed CARMEL to see the objects between 1 and 12 meters away, in a �eld of view(FOV) of about 55 degrees, with high accuracy and reliability. The camera is mounted on a50cm tower that is mounted on a computer controlled rotating table. This table is mounted onthe top base of the robot; the top base does not rotate with CARMEL's base. This decouples



the motion of the camera from the rotation of the robot. The camera mounted on the towerallows CARMEL to see over the tops of the obstacles, resulting in unobstructed views of thearena and of all objects located in the arena (and of any possible false objects outside of thearena as well).2.1.2 ProcessingAll processing is done on board CARMEL. Three computers work cooperatively while the robotis running. These consist of: an IBM PC clone running a 33 MHz, 80486{based processor, whichperforms all of the the top level functions of the system such as vision processing, planning, abso-lute positioning, building and maintaining the sonar{based occupancy map, etc.; a motor controlprocessor (Z80) receives motion and steering commands from the top level computer, controls therobot's wheel speed and direction, and maintains the robot's odometry information; and an IBMPC XT clone which is dedicated to the sonar ring, controlling the �ring sequence and �ltering sonarcrosstalk and external noise from the sensor data. Having all processing on board allowed CARMELto navigate at high speeds while smoothly avoiding obstacles. This is in stark contrast to mostof the other teams (all except CARMEL and SRI's Flakey) in the competition that were sendinginformation to external processors. These robots operated in a jerky, stop{and{go fashion waitingfor sensor information to be sent o�board for processing.2.2 Sonar subsystemThe ultrasonic system on CARMEL consisted of a ring of 24 sonar sensors evenly distributed aboutthe robot's torso. A separate processor manages the �ring sequence of the sensors and the subsequent�ltering of noise and crosstalk (see [2] for a detailed description of the design of EERUF, the erroreliminating rapid ultrasonic �ring system designed by Borenstein and Koren). This �ring sequenceand �ltering process allows CARMEL to rapidly �re and sample the ultrasonic sensors for fastobstacle avoidance. The implemented version on CARMEL permits a �ring rate 2 to 5 times fasterthan that of most conventional sonar implementations.One of the most popular approaches to obstacle avoidance is based on the principle of potential�elds. However, in the course of experimentation with this method, Koren and Borenstein foundthat at higher speeds potential �eld methods will inherently cause oscillations when traveling nearobstacles or in narrow passages. To overcome these problems, Borenstein and Koren developedan obstacle avoidance method called the vector �eld histogram (see [1] for a thorough descriptionof VFH). The VFH method uses a two dimensional Cartesian grid, called the histogram grid, torepresent data from ultrasonic (or other) range sensors.The combination of EERUF and VFH is uniquely suited to high speed obstacle avoidance; it hasbeen demonstrated to perform reliable obstacle avoidance in the most di�cult obstacle courses atspeeds of up to 1.0 m/sec.2.3 VisionThe ability to accurately detect and identify objects in the world was important for earning themaximum number of points, as well as for keeping position and orientation errors within tolerablelimits. Consequently, the system was designed from the onset to be reliable, accurate, and fast.Obviously, all these characteristics are desirable for any computer vision system. However, this isoften not true of many implemented systems. Various object identi�cation schemes were considered,but a vision based system had an important advantage in its potential for long range sensing. A majorconcern was the inherently heavy computation generally required for image processing. However,
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Figure 1: Example object tags showing the basic pattern (left) and the patterns for some of theobjects used (bit pattern 5, 10, and 17).by intelligently designing the object tags, the computation was greatly reduced. We succeededbecause our focus was on the objective, not the method. In other words, the algorithm did not driveour development, we let the desirable characteristics, given the task at hand, drive the design anddevelopment.2.3.1 Object designThe object tag design used for CARMEL consists of a black and white stripe pattern placed uponPVC tubing with a four inch diameter. The object tags that were used are shown in Figure 1. Thebasic stripe pattern is six, evenly spaced horizontal black bands of 100 mm width, with the top ofthe top band and the bottom of the bottom band spaced 1000 mm apart. The white gaps betweenthe black bands correspond to the bit positions in a �ve bit word. A white space between two bandscorresponds to an \o�" bit, while �lling the space with black corresponds to an \on" bit. The �vebits between the six bands can then represent 32 unique objects. One of the most signi�cant aspectsof the striped PVC tags is that they are omnidirectional, appearing the same from all directions.This had a great impact upon the exploration algorithm used, as the robot did not have to approachobjects from a particular direction. Rather, CARMEL had only to get within visual range of anobject to perform identi�cation.2.3.2 IssuesThe commitment to computer vision for object identi�cation and localization introduced manyissues, such as:� Reliability { The image processing system should minimize erroneous object sightings, such as:1) seeing objects where there are none (e.g. a spectator wearing a shirt or blouse with a stripepattern similar to that of the poles), 2) not seeing objects when the robot should have (e.g.due to poor lighting, occlusion, etc.) 3) and misidentifying an object as another object (e.g.when the object is very far away and the stripe pattern begins to become indistinguishable).



� Determinism/Robustness { The processing time should have little variance from one run toanother under various conditions. The vision algorithm should have a predictable responsetime regardless of whether there are zero or ten objects in an image. Also, the vision processshould be robust. Unexpected or unusual conditions such as bad lighting, motion in thebackground due to spectators, etc. should not cause the system to respond erratically.� Accuracy { The error associated with the calculated orientation and distance to objects shouldbe minimized. Smaller errors in these calculations correspond to a lesser degree of uncertaintyin an object's position, lifting some of the burden from the planning system that has to dealwith uncertainty from other sources as well.� Speed { Vision processing can be notoriously slow. Due to the 20 minute time limit for thesecond stage, and the bonus for being the fastest entry to accomplish the directed search, itwas imperative that the vision process be fast.� Range { The more information the vision system can provide to the robot, in terms of a greaternumber of object identities and locations due to increased range, the better o� CARMEL is inthe long run. This allows for more e�ective exploration of the environment, allowing the highlevel planner to better select subgoals.2.3.3 The algorithmObject identi�cation and localization is performed with a single pass, gray scale, vision algorithm.About two seconds of processing time is required per image. Each column of the image is scannedfor a legal sequence of object bits. Since we had only ten objects to identify, all of the object codespossible with the �ve bits were not used. While processing a column for potential objects, those bitpatterns that are illegal are thrown out of consideration.Similarly, any potential object whose band widths and size ratios violates the object tag designalso gets thrown out of consideration. The algorithm scans a column of the image, looking for highintensity gradients, either light to dark (negative) or dark to light (positive). If a negative transitionis found, the algorithm starts a potential object. Upon detecting the �rst positive transition after thisthe band width of the previous black band is calculated. Continuing, the algorithm then looks forthe next negative transition. Upon detecting one, the band width of the white band is calculated,and another potential object is identi�ed. The white band width is then compared to the blackbandwidth. If the ratio of the sizes of these bands is not correct, within a certain allowable error,the algorithm rejects the object. The process continues until the bottom of the image is found oran object has �ve bits, indicating that it is complete. If there are still potential objects when thebottom of the image is found, all of the incomplete objects are rejected.Once a column is complete, the objects found in the column are heuristically merged with objectsfound in previous columns. Objects are slowly \grown" in this fashion, until an object's edge is found,and no more columns are merged into it. The heuristics used simply look at the bit patterns to makesure that they are identical, the band widths are very similar, and the objects' tops and bottoms arein very similar positions in the image. Once the entire image is processed, another heuristic mergingprocess is invoked that merges multiple segments of an object that happened to slip through theinitial merging algorithm (an object may be initially detected as several adjacent thin objects withthe same bit pattern). The heuristics used at this point check that the object's bit patterns areidentical, the object segments are not too far apart in the image, and the top and bottoms are invery similar locations in the image.The distance between the top of the top band and the bottom of the bottom band, in terms ofthe number of pixels in the image, is then used to estimate the actual distance from the camera to



the object. The location of the object on the image plane is also used to calculate the orientationof the tube from the robot. The distance and orientation are then converted to cartesian values asan estimate of the object's position.The general idea of the algorithm is that the number of constraints imposed by the design of theobject tag will eliminate everything in the image except the objects themselves. We decided thatthe object tag design would be much better if we did not use a four bit code, the minimal numberof bits to encode the ten objects. The �ve bit code allowed us to use bit patterns that did nothave adjacent \on" bits, which would have created large black sections on the object, which woulddecrease the number of positive and negative transitions in the object.One unexpected problem was that moving objects in the scene tend to create objects that looksimilar to the black{and{white band sequences that the algorithm searches for, resulting in signi�cantadded computation. The interlaced scanning of the CCD cameras electronics require 1/60th of asecond between even and odd scan lines, and the boundaries of moving objects create an interlacingof bright and dark bands one pixel wide. These readings are initially 
agged as potential objectsthat force additional heuristic processing. While the algorithm removes most of the false readingsusing the heuristics described above, these heuristic computations grow exponentially relative tothe number of objects detected during the single pass algorithm. It happens that over one{hundredfalse objects can be introduced due to motion in the image, making the vision system extremelyslow in such instances (sometimes running for several minutes). The main issue here is that ofdeterminism, and perhaps robustness if the computers memory resources become exhausted.To avoid this extra heuristic processing, a band-width constraint was added, requiring at leasttwo pixel wide object bands before acceptance; this added computation is merely a function of theimage resolution, and the processing time is deterministic. Theoretically, this decreases the e�ectivedistance of identi�able objects. In practice however, this is almost never the case because it is veryrare for all of the black bands to be discernible when they are only one pixel wide on the imageplane. Usually only a few object bands are noticeable at such distances. The minimal band widthfor e�ective recognition tends to be two or three pixels, with a maximum identi�cation range ofapproximately 12 meters.The absence of �ltering or preprocessing of the image helped to reduce the system's speed,and just as important, helped to increase the system's accuracy. Image preprocessing tends toreduce the overall accuracy by combining data (locally) and �ltering the image data. An importantobservation, then, is that image preprocessing is not always desirable, as in this application.Once objects were located, their locations were recorded so that the robot could visit them. Aglobal map, distinct from the sonar based VFH map, was created to record object locations. Thismap used the same coordinate system as the VFH map, however, to simplify path planning (a lowlevel routine used to get between locations while avoiding known obstacles in the VFH map).Although the CARMEL team experimented with preprocessing methods, the �nal vision systemhad no image preprocessing. This would have added complexity to the system and slowed down thevision process and, hence, the entire process of exploration. Color image processing methods werealso explored. The red and green components of a color camera were used to segment bright orangebands from background imagery. However, the additional overhead of processing two images insteadof one was ine�cient, and a gray scale vision system was preferred because of reduced processingand simplicity. The algorithm had proven to be quite immune to most background noise and colorvision methods deemed unnecessary. Reliability and Speed were the main issues here.



2.4 Vision system applicationsTo be able to �nd all the objects, CARMEL needed to explore the entire arena, perhaps redun-dantly. There was no prior information about the object locations, requiring a general and thoroughexploration methodology. Due to the 20 minute time limit, CARMEL was designed to performthe task as quickly and e�ciently as possible. Redundant and/or super
uous activity had to beminimized in order to accomplish Stage 2 within the time limit. Expensive computation, such asimage processing, had to be optimized, and its use minimized.The �nal version of the vision system could identify objects up to a 12 meter distance. Such alarge visual range greatly reduced the amount of motion around the environment required to coverthe area visually. From a single location near the center of the arena, it was possible to see all tenof the objects, although it was possible for some objects to occlude others. Therefore, CARMELsimply took a 180 degree vision sweep at the start of the run, moved across the center of the arenato a point slightly past the center, and then took a full 360 degree sweep. In the event that thesetwo vision sweeps did not see all the objects, four additional vision locations were de�ned to forma square roughly 8 meters on a side, centered within the arena. At each of these locations, another360 degree vision sweep could be performed, if needed. In actual competition, only the �rst twovision locations were needed.Experimentation showed the vision algorithm to be very robust and accurate in determining anobject's location, even though distance and angular orientation were estimated in a single image.Empirical results showed the distance estimates to be approximately two percent of the distance tothe object, or about two centimeters for every 10 meters distance. Error in angular estimates wastypically only one or two pixels, or about 0.2 degrees. These very accurate estimates stem from theability of the algorithm to very closely identify the true edges of the objects in the image.During times of long distance travel, CARMEL's dead reckoning system accumulated large errors.To correct for this, throughout its exploration run CARMEL determined the locations of the objectsdistributed in the environment, perhaps not very precisely. It could then use these object positionsto determine its global absolute position. By taking a sweep of its surroundings with the camera, anddetermining the angular separation between the objects found, it was then possible for CARMEL todetermine its position and possibly its orientation (two objects permit location determination, threeor more objects permit orientation determination as well). CARMEL uses an absolute positioningalgorithm based on circle intersection (see [3] for an overview of three object absolute positioningalgorithms). As it turned out, the absolute positioning code was not used in the competition becausesome of our last minute changes were incompatible with it.3 COMPARISON OF PERFORMANCEHaving covered CARMEL's sensing capabilities fairly thoroughly, we can now take a look at theother robot entries. There were a total of ten entries at the competition, representing both academicand commercial organizations. All of the teams were given the same rules and regulations with whichto design their robots. Included in these rules was the allowance for each team to design the objectswhich they would be required to locate. This allowed each team to design and optimize for anysensor modality and/or algorithm that they wished. Most teams were somewhat constrained tousing sensors that were already available, most relying upon some form of vision sensing. A coupleentries used laser scanning techniques, while one entry used infrared beacons, and one entry usedonly sonar.The competition provided a regulated environment and a common task. We can analyze theuse and implementation of these designs based, in part, upon the performance exhibited in the



Entry Finish Finish FinishExploration Directed Search OverallMichigan 1 1 1SRI 3 4 2Carnegie Mellon 4 3 3Miller/Millstein 4 4 4Georgia Tech. 2 7 5NASA JSC 5 5 6IBM 7 2 7Mitre DNF 8 8Brown 8 DNF 9Chicago DNF DNF 10Table 1: Competition Resultscompetition. For a quick summary of the entries and the respective performance, see Table 1. Wewill try to account for any di�erences in the robot's architectures that were not sensor related buthad signi�cant impact upon the results. We will give a brief description of each entry's design,analyzing the competition's results based upon characteristics of each entry's sensing systems. Asmost of the entries utilized sonar and/or infrared detectors for collision avoidance, and all performedpretty well in this regard, our analysis will focus most carefully on the object identi�cation systemsused by each entry.3.1 The University of MichiganAs already noted, CARMEL placed �rst in both scoring rounds, winning the overall competition.Rapid sonar �ring and excellent vision performance contributed to an incredible performance inStage 2: CARMEL was the only robot to locate all 10 objects in the 20 minute time limit, and, infact, did so in 9.5 minutes. In Stage 3, we again came in �rst place, �nishing the task in 3.0 minutes,well ahead of the second place �nish of 3.5 minutes.3.2 Stanford Research InternationalSRI's Flakey was a custom built octagonal robot �tted with 12 sonar sensors, a ring of touch sensors,and a structured light system using an infrared laser and a CCD camera. SRI was the only teamother than Brown University that did not create an arti�cial \object" of any sort. They used astructured light system with a range of about 6' to identify the bare object tubes, upon which theother teams placed their object tags.Flakey operated by roaming about the world, registering straight wall segments of the arena'sboundaries while looking for skinny, distinct objects with its sonar system. Whenever a candidatewas found, an object pole or perhaps the corner of one of the boxes, the structured light systemwould be used to verify the sighting. This system worked exceptionally well, giving no false readingsthrough the course of the competition. The candidate hypothesis algorithm itself worked verywell, only giving one false signal throughout the competition. The entire object detection andidenti�cation system was very well thought out and implemented. Flakey did very well in Stage 2.However, at one point Flakey got confused about its position and identi�ed an object that it had



already found as a new object. This was an artifact of the robot having lost so much accuracy on itsodometry by that point that it thought the \new" object to be far enough away from other objectsto be unique. They ended up �nding eight objects in Stage 2 and doing fairly well in Stage 3.3.3 Carnegie Mellon UniversityCarnegie Mellon University used a Hero 2000 robot named Odysseus with the standard Hero sonarsensors, one rotating at the top and one �xed at the base, and an added camera system. Thesonar information was used to construct a two dimensional occupancy map of the environment.The computer vision system detected and identi�ed large (approximately 2' in diameter and length)tubes. The detected objects were also placed into a map for later reference. The objects themselveswere designed to have two visual parts: a checkerboard pattern of black and white squares to locatethe object, and a stripe pattern with which to identify the object. Running on an Sun-4 workstation,the vision algorithm took approximately 6 seconds for each image. Two cameras were used, one witha wide FOV and one with a narrow FOV. The wide angle camera had an 82.0 degree FOV with avisual range of over 21 feet. The narrow angle camera had a 28.0 degree FOV, but its range wasmuch greater, at over 69 feet.Despite running on a fairly simple and slow robot, they did well, �nding seven objects in Stage 2.They also performed the directed search well, coming in with a third place time. This may be inpart attributable to their use of a computer vision system to perform long range sensing. Due to thelarge size of the objects they were able to detect a large number of objects at any place in the arena.Their performance was also probably aided by the fact that they performed their tasks within thesmall arena, which was approximately half the size of that used by the larger robots. They werehindered, however, by their use of the Hero, which could not move as quickly around obstacles dueto limited mobility.3.4 IBMIBM had an RWI{based platform called TJ1. Its sensor systems consisted of an array of twelve shortrange and four longer range infrared proximity sensors, eight sonar sensors (four looking forwardand four looking to the sides), a planar rotating infrared range sensor, and a low-bandwidth videocamera. The infrared and sonar sensors drove obstacle avoidance behaviors in the robot, while therotating infrared range sensor and vision system were used for object detection and identi�cation.The detection of potential objects was performed using the rotating range sensor. Course res-olution sweeps of the environment were made while the robot was roaming around exploring thearena. Whenever a potential object pole was sensed, the robot would take a more detailed scan inthe particular area of interest. If an object pole was found, its position was saved into a map andthe robot moved closer to the object. The camera would then take an image which was averaged,subsampled, and a vertical band digitized before being sent via radio modem to an o�board work-station for interpretation. The object poles were tagged with a small (3" diameter) four bit blackand white binary stripe pattern.They fared horribly in Stage 2, �nding only three of the objects. From observing the robot,this poor showing seemed to be due to a problematic vision system. Not only was the imageacquisition performed using an analog video camera, the resulting digitized vertical strip was thentransmitted via radio modem. Teams were experiencing poor reliability and noise on their radiomodems throughout the competition. They also opted for a very small object tag, in part due toconstraints placed on them due to the range of their sensors (4 feet or less), which also put them at



a disadvantage. For Stage 3, they relied entirely on odometry for navigation, and came in with avery good time of 3.5 minutes.3.5 Georgia Institute of TechnologyThe Georgia Tech team used a Denning robot base called Buzz. Buzz was equipped with 24 ultrasonicsensors distributed evenly about its base for obstacle avoidance and an active vision system for objectlocation and identi�cation. In addition to this, they also had an infrared beacon system to aid inobject detection. The beacon system failed to work in the convention center where the competitionwas held, however, due to interference with the type of lighting used.Their vision system was unique among the competitors in that it used a small, but bright, lightsource mounted on the robot. Their identi�cation scheme was based upon placing three strips ofretrore
ective tape on the object tubes. The top and bottom strips were placed at constant heightsfor all of the objects, approximately six feet apart, the bottom strip placed at camera level for easydiscrimination. The third strip, was placed between the other two, permitting identi�cation basedupon the ratio of the distances between the three strips. The constant height between the top andbottom tape strips permitted distance recovery from a single image. The light source's function wasto cause the tape stripes to strongly re
ect the light, making them stand out from the background.The object identi�cation system had a range of about 60 feet, with a FOV of 30 degrees.They found eight objects in Stage 2. Buzz stopped, however, because it had misclassi�ed two ofthe already found objects as new objects and thought that it was done. They were slow performingStage 3, having trouble identifying the second pole in the designated sequence. Some of the di�cultiesexperienced during this task were caused by RF interference with the radio modems which they usedto send information from the robot to an o�board workstation that processed the information.3.6 Dave Miller and Jacob MillsteinMiller's and Millstein's entry, Scarecrow, was unconventional in that it was built entirely fromelectromechanical devices such as relays, servos, and microswitches. Scarecrow performed objectsensing by contacting four pairs of wires on the head of the robot, held above the drive assembly ona long, thin tubular neck. Steel wool stripes were fastened around the object poles at the correctheight in the binary pattern corresponding to the object number designated for that position. AsScarecrow moved around the arena, it would periodically run into an object pole. If it hit the objectcorrectly, each strip of steel wool would close the corresponding circuit between a pair of wires onScarecrow's head. While exploring for objects, the robot did nothing upon detecting an object otherthan make a 
urry of noise. In the directed search, however, running into an object was checkedby decoding relays. If the pattern was correct for the object, Scarecrow was searching for it wouldadvance a solenoid that would permit the detection of the next object in the sequence.Entirely memoryless, Scarecrow worked entirely by performing a fast random walk around thearena, hoping that chance would bring it to the objects. It performed very well, �nding sevenof the objects in its wandering, and �nished Stage 3 quite quickly. Scarecrow's simplistic and veryspecialized design demonstrated that sophisticated hardware and software were not necessary for theparticular tasks given, and perhaps are not necessary for many robotic tasks in general. Scarecrow'sperformance did su�er quite noticeably from a lack of long range sensing, missing several objectsquite narrowly on its mad exploration of the arena.



3.7 NASA Johnson Space CenterJSC relied on color vision techniques for identi�cation of the objects, and the standard ultrasonicand infrared sensors for obstacle avoidance. They also had pressure sensors to immediately stop therobot should it run into anything. Soda{Pup, their robot, was built from a Nomad 200 mobile robotfrom Nomadic Technologies.The JSC team's object recognition system was based upon a color CCD camera which constantlytransmitted an image in NTSC format back to an o�board workstation for processing. The imagewas then color segmented into eight color regions, divided into blobs, and �ltered by size. They thencompared the geometric relationships between these blobs to object models. Matching relationshipsresulted in a positive match and the identify of the object was then determined by the particulararrangement of the blobs. Range and position estimates were computed from triangulating objectsfrom multiple views.One possible explanation for their sixth place �nish may be their computer vision system, whichseems to be rather computationally expensive. This may have caused them to have done moresitting than exploring. Also problematic for them was the fact that their transmission of the imagesin NTSC format added a great deal of noise and distortion to the image, requiring more sophisticatedlow level processing.3.8 Mitre Corp.Uncle Bob, Mitre Corp's entry, was based upon a Denning platform, and featured 24 ultrasonicsensors about its midsection, 6 more mounted just above the 
oor, and a laser target readingsystem. The sonar system provided the sensing necessary to perform e�ective obstacle avoidancewhile the laser target reading system located and identi�ed objects tagged with a special re
ectivebar code panel.Uncle Bob had incurred heavy damage to its laser scanning system and a drive axle while it wasbeing shipped to the competition. Although a great deal of work was put into trying to patch upthe system to handle such damage, Uncle Bob was e�ectively out of the competition. It was unableto complete an o�cial Stage 2 run (it was given a chance in order to create a map of objects butit did not count toward its competition score). While performing Stage 3, it was unable to �nd allthree of the objects that it had been directed to �nd and came in last place of the eight entries thatcompleted the competition.3.9 Brown UniversityBrown was another robot that had problems, as much with their undebugged system as with hard-ware. The team was composed primarily of a group of undergraduate students, with some assistancefrom graduate students. Their robot, Huey, was based upon a RWI B12 platform, and relied com-pletely on eight sonar and two infrared sensors for obstacle avoidance and object detection. Brown'srobot was one of only two robots entered that did not arti�cially mark the objects. The robotinterpreted the sonar readings and created a probabilistic map of interesting features in its vicinity.It also built a node map containing interesting positions as nodes linked by free paths between them.The complexity and di�culty of their approach was their downfall, however, as they were forcedto withdraw Huey from the competition after not �nding any of the objects in Stage 2. It is notknown why they decided to rely entirely on sonars for every aspect of the competition. It is readilyapparent, however, that they placed themselves at a distinct disadvantage by doing so.



3.10 University of ChicagoThe University of Chicago had the worst luck of all of the teams. Their robot Chip was anotherRWI{based platform. They relied on eight sonar and sixteen infrared sensors, and had added a colorcamera on a pan/tilt head to perform object identi�cation and recognition. They were forced outof the competition after having their original DataCube image processing board, and an emergencyreplacement board, burn out on them. Their object design was to consist of an omnidirectional colorcoded sign, with an algorithm using color histogramming to be used to identify them. It would havebeen interesting to see how their approach worked, as only one other team, NASA's Johnson SpaceCenter, used color vision techniques, and that with limited success.4 CONCLUSIONSThere were three issues that seemed to be the most signi�cant for success in the competition: longrange sensing, all onboard processing, and simplicity in design. Even robots with limited mobility,such as Carnegie Mellon's Odysseus performed extremely well due to its ability to detect objectsfrom a great distance. Robots not designed for onboard processing su�ered greatly due to errorsand time delays in the communication of information. Finally, simple approaches also seemed to bethe correct approach, epitomized by Scarecrow's spartan design. The winning entry, The Universityof Michigan's CARMEL, incorporated each of these three characteristics.5 ACKNOWLEDGMENTSThe authors wish to thank the other members of the CARMEL team. Support for the CARMELteam was provided by The University of Michigan College of Engineering, The University of MichiganRackham School of Graduate Studies, the American Association for Arti�cial Intelligence, ABBRobotics Inc. and ABB Graco Robotics Inc. Marcus Huber is supported in part by DARPA grantno. DAAE-07-92-C-R012. Purchase of CARMEL and support for research using it is provided byDepartment of Energy grant no. DE-FG0286NE37969.REFERENCES[1] Johann Borenstein and Yoram Koren. The Vector Field Histogram for fast obstacle-avoidancefor mobile robots. IEEE Journal of Robotics and Automation, 7(3), 1991.[2] Johann Borenstein and Yoram Koren. Noise rejection for ultrasonic sensors in mobile robotapplications. In The Proceedings of the IEEE Conference on Robotics and Automation, 1992.[3] Charles Cohen and Frank Koss. A comprehensive study of three-object triangulation. In SPIEMobile Robots VII, 1992.[4] Thomas Dean and R. Peter Bonasso. 1992 AAAI robot exhibition and competition. AI Magazine,Spring, 1993.[5] David Kortenkamp, Marcus Huber, Clare Bates Congdon, Scott Hu�man, Clint Bidlack, CharlesCohen, , Frank Koss, Ulrich Raschke, and Terry Weymouth. Integrating obstacle avoidance,global path planning, visual cue detection and landmark triangulation in a mobile robot. InProceedings of SPIE Mobile Robots VII, 1992.


