ORINCON’s Agent Workbench:
A Graphical Framework for Building

BDI-Based Intelligent Software Agents

Marcus J. Huber ;
Jaeho Lee, Cherilyn Michaels, Cheryl Zenor, Vivek Samant

ORINCON Corporation
9363 Towne Centre Drive, San Diego, CA 92121
Phone: (619) 455-5530
marcush@home.com
{jaeho,michaels,czenor,samant }@orincon.com

Abstract

Designing, implementing, and debugging agent—based applications
can be a long and laborious process. ORINCON’s Agent Workbench
simplifies and speeds up this process of designing and instantiating ap-
plications with one or more intelligent software agents using a collec-
tion of graphical tools and underlying representations all implemented
in Java for maximum portability. The Agent Workbench graphical
user interfaces provide an easy to use integrated graphical and textual
programming environment that facilitates functionality development
and reuse at multiple abstraction levels (native—code primitive func-
tions, plans, and multi-agent processes) for Belief-Desire-Intention
(BDI) based agents. The Agent Workbench also provides facilities for
monitoring and controlling the runtime state of executing agents to
aid in debugging and refining agent—based applications.

*Now with Intelligent Reasoning Systems, 240 Belflora Way, Oceanside CA 92057,
http://members.home.net/marcush/irs.html

1 Introduction

The use of intelligent software agents within applications has been grown in-
creasingly popular in the last few years. Multiagent systems, where a number
of agents cooperate to perform tasks, have also received considerable atten-
tion lately. Our definition of an agent is an autonomous, intelligent software
entity that can make decisions and perform actions based on perceived in-
puts in order to achieve some goals [13]. Agents exhibit a number of useful
characteristics, including varying levels of autonomy, reactive and proactive
behavior, mobility, communication, and cooperation [15]. Agents also typi-
cally have declarative representations for tasks and other attributes, making
them much more flexible than more traditional software approaches that use
implicit representations. Research related to agent theories and architec-
tures has reached a maturity level at which people are confident enough with
the technology to incorporate it into applications outside of purely academic
systems.

It is safe to say that a large majority of all agent—based applications to
date were constructed using standard software implementation processes and
standard software development tools. Although many general development
tools can work across a wide range of problems and paradigms, in many cases
tools designed specifically for a particular domain can simplify and streamline
development. Such is the case with intelligent software agents. Generic
software development tools are typically adequate for building agent—based
systems, but tools optimized for such a task, that address the particular issues
and perspectives required for agent—based systems, should result in faster,
easier, and more focused development. We have designed and implemented
such a specialized tool, which we call the Agent Workbench Environment,
(or simply, Agent Workbench) in Java.

The Agent Workbench is a graphical framework and a set of underlying
representations designed to facilitate the design, construction, and execution
monitoring of single and multi—agent systems. It consists of a Multi-Agent
Editor, an Agent Functionality Editor, and an Agent Execution Monitor. It
is implemented in Java and therefore inherits all of the benefits associated
with Java; in particular, the Agent Workbench should run on any platform
that has a Java virtual machine.

The Multi-Agent Editor (MAE) is a graphically—interfaced tool used to
create and edit multi—agent process specifications (i.e., tasks requiring more

than one agent). Its underlying representations are being modified to be
based upon the IDEF3 process modeling standard [10],! which we extended
in order to capture information required for instantiating the multiple exe-
cutable agents required to perform the process. This new scheme provides
support for multiple perspectives, or views, into the process model. These
views include: the role view, which depicts a process from an agent—centric
perspective, which highlights which agents are responsible for which tasks
within a process; the activity view, which depicts a process from a task—
centric perspective, which highlights which tasks must be performed, and
in which order, to accomplish the objective of the process; the object view,
which depicts a process from one of the (possibly many) objects being man-
aged within the process, and shows the transformation of the object as the
process is executed; and the schedule view, which indicates the temporal se-
quencing of each of the tasks required for the process independent of the role
required for each task. We describe the MAE in more detail in Section 2.

The Agent Functionality Editor (AFE) provides a number of graphical
tools for specifying agent capabilities at multiple levels of abstraction, from
primitive functionality to abstract plans to multi—agent plan specifications.
The AFE is closely coupled with the MAE so that process specifications
created within the MAE can be further refined within the AFE. The AFE’s
primary use is for development and refinement of plan specifications for single
agents. This typically amounts to specifying one or more goals for the agent,
an initial set of beliefs for the agent, and a set of capabilities in the form of
one or more plans that the agent can use to achieve its goals. None of these
specifications are formally required however, as we recognize that an agent
may have the ability to generate plans, sense or infer beliefs, create goals
on the fly, etc., or an agent might acquire these from other agents through
communication. We describe the AFE in more detail in Section 3.

The Agent Execution Monitor (AEM) provides several graphical user in-
terfaces for observing and changing agent behavior during agent execution.
Separate interfaces exist for the beliefs, pending and active goals, and in-
tentions (instantiated, executing plans) of an agent. For example, the in-
terface for the agent’s beliefs provides the ability to view, modify, add, and
delete beliefs during runtime. Executing agents interface to the AEM dis-

IThe current implementation was not based upon IDEF standards but does provide
fully functional multi—agent process specification capabilities.

plays through sockets, a communication mechanism commonly supported on
many operating systems on many hardware platforms. CORBA (Common
Object Request Broker Architecture [14]) support is planned for the near
future. We describe the AEM in more detail in Section 4.

Before describing the Agent Workbench in more detail, clarification of
its intent and scope is in order. The Workbench is designed to accom-
modate a wide range of agent architectures based around the general Be-
lief/Desire/Intention (BDI) theoretical framework [12]. These, in the cate-
gorization of Wooldridge and Jennings [15], are a form of “hard” agent ar-
chitecture, which have explicit conceptual and/or implementational models
of such concepts as knowledge about the world (beliefs), goals (desires), and
commitment to action (intentions), among others. That is, the BDI agents
constructed with the Agent Workbench have a stronger notion of agency
than their category of “soft” agents. Such soft agents may exhibit external
behavior similar to their more theoretically founded counterparts, but do not
have the explicit, usually declarative modeling of such concepts and there-
fore tend to be more specialized and less flexible and dynamic, with implicit,
hard-coded capabilities. The initial implementation of the Agent Workbench
currently fully supports the UMPRS agent architecture — the University of
Michigan implementation of the Procedural Reasoning System [5, 9] and is
easily extensible to alternative BDI agent architectures such as the Java-
based Jam agent [4].

2 Multi-Agent Editor

The Multi-Agent Editor (MAE) component of the Agent Workbench models
the interactions between autonomous agents that may be engaged in coop-
erative and non—cooperative tasks. These agents are possibly geographically
distributed and intentionally divergent (disparate goals and priorities).

The MAE provides the functionalities to construct and edit multi-agent
interactions at multiple levels of abstraction (connectivity, language, proto-
col, communication mechanism). In addition, the activities specified in the
process can be automatically mapped to executable individual agent plans.
The individual agent plans also manage interdependencies between activities
such as adequate sequencing and synchronization of activities to coordinately
accomplish the goals identified in the multi—agent process.

The representational and functional requirements for the MAE are similar
to that found in the field of workflow [3, 6] and we attempt to leverage the
insights and previous work from this work and such standard representations
as IDEF3 [10] as much as possible.

A workflow management system is an active system that manages the
flow of business processes performed by multiple persons. A comprehensive
definition of workflow management is given by Hales and Lavery [2] as follows,

Workflow management software is a proactive computer system
which manages the flow of work among participants, according
to a defined procedure consisting of a number of tasks. It co—
ordinates users and system participants, together with the ap-
propriate data resources, which may be accessible directly by the
system or off-line, to achieve defined objectives by set deadlines.
The coordination involves passing tasks from participant to par-
ticipant in correct sequence, ensuring that all fulfill their required
contributions, taking default actions when necessary.

In other words, workflow management can be considered as a specification
coordination problem, and thus we find closely related issues with multi—
agent systems such as coordinated activity and resource sharing between
agents.

The current implementation was not based upon IDEF3 standards but
provides fully functional multi-agent process specification capabilities (See
Figure 1). In this implementation, the MAE graphically depicts a multi—
agent interaction model represented in a declarative manner and results in
workflow execution procedures that are distributed among the agents pos-
sessing roles in the interactions specified in the interaction specification.

Our underlying representations are being modified to be based upon the
IDEF3 process modeling standard, which we extended in order to capture
information required for instantiating the multiple executable agents required
to perform the process. IDEF3 is designed to help document and analyze
the process of an existing or proposed system. Proven guidelines and a
language for information capture help users represent and organize process
information for multiple downstream uses [10]. By switching to the IDEF3
process modeling standard, we can take advantage of established knowledge
engineering methodology and existing extensive process libraries.

Process Viewers Edit Roles E

Process: PingPongl cop.proc

HNAME: —
PingPong Loop Process
ROLESTATES :

FILE: Pingloop. vs
ARITY: ONE

e T GROUP: Ping

ROLESTATES : —

INIT_DONE INT_DONE FILE: PongLoop. b5

. S
IMIT_D I-JE WIT_DOK # E
G X (] 1=
NG G_5EN I

Build Process
Roles
Pingl oop.rs
PongL oop.ra

Figure 1: An example of the current Multi-Agent Editor display. This pro-
cess consists of two roles: one role sends “ping” messages to the agent fulfill-
ing the other role; the second role receives “ping” messages and sends “pong”
replies to the agent fulfilling the first role.

The MAE supports multiple views of the multi—agent process that the
user can switch between to get different insights into the process. The ac-
tivity view and the object view corresponds to the process-centered view and
the object-centered view of IDEF3, respectively. Activity views focus on as-
sertions about the processes that occur and their ordering. Object views, on
the other hand, focus on a participating object or set of objects.

In addition, the MAE supports the role view and the schedule view. The
role view depicts a process from an agent—centric perspective, which high-
lights which agents are responsible for which tasks within a process. The
schedule view indicates the temporal sequencing of each of the tasks required
for the process independent of the role required for each task.

Activity View

The activity view helps users to represent knowledge about events and activ-
ities, the objects that participate in those occurrences, and the constraining
relations that govern the behavior of an occurrence. The activity view, or
task view, in the MAE is a graphical layout explicitly indicating each of
the tasks required for the process independent of the role required for each
task. The graphical elements, adopted from IDEF3 process representations,
include Unit of Behavior (UOB) boxes, links, and junctions.

A UOB is a distinguishable packet of information about an event, deci-
sion, act, or process. Links specify relationships (constraints) between UOBs.
Precedence links express temporal precedence relations between instances of
one UOB and those of another. Relational links (dashed links) carry no
predefined semantics, thus users can use it to highlight the existence of any
relationship between two UOBs.

A junction is a point in the process flow where a process flow path
branches into multiple paths (fan-out junctions), or multiple process flow
paths merge into one (fan-in junctions). Junctions thus describe the flow
logic of the process.

In the MAE, UOBs and links also have additional attributes to support
other views. The UMPRS agents that we can build with this model neces-
sarily are limited to a subset of junctions however. Specifically, instantiable
agents support AND and OR fan-in and XOR and synchronous AND and
OR fan-out. UOBs and links have attributes associated with them that are
not standard IDEF3. For UOBs, these may include (but are not limited to):

Label: a unique ID

Subprocess specification: label or other unique identifier of a sub-graph
that specifies how to accomplish the UOBs action.

Cost: Numeric value or function that specifies how expensive the action is.
Failure condition: situations in which this action fails.

Duration: how long it takes to perform that action. This may be something
like a constant, a min/max range, or a function.

Role(s): one or more labels specifying either a requirement of the “services”
that the performer of this action must have in order to do it, or the
label applied to a performer of this action.

Annotation: miscellaneous domain/application—specific information.

Links between nodes have conditions specified for them that represent
when the transition between nodes will occur. The link condition represen-
tation may include (but is not limited to) the following relationships:

Temporal transitions: simple sequencing of actions.
Event transitions: messages or other types of a temporal occurrence.

Arity constraints: how many of a particular event, message, recipient or
source, etc. need to be involved.

Resource constraints: requirements of resources. The idea of how this
representational information is transformed into actual agent—specific
code is that each UOB (and failure block) corresponds to an agent
operator (plan) and that the conditions on the links represent pre-
conditioning contextual information on when the successive states are
executed.

Object view

An object state in the IDEF3 process method is any physical or conceptual
thing that is recognized and referred to by participants in the domain as a
part of their description of what happens in their domain. The object view
depicts information about how objects of various kinds are transformed into
other kinds of things through a process, how objects of a given kind change
states through a process, or context-setting information about important
relations among objects in a process.

In the MAE, the object view is displayed using a graphical layout explic-
itly indicating the states one particular object takes throughout execution of
a process. Each object involved in a process would have a view from its own
perspective.

Role view

The role view is a graphical layout explicitly indicating each of the tasks
for each role involved in the process, independent of which agent (software
or human) actually performs the role. A more specific role view, where
individual role interactions (e.g., messages, signals), and state transitions
and conditions can be viewed and modified.

Schedule view

The schedule view is a graphical layout explicitly indicating the temporal
sequencing of each of the tasks required for the process independent of the
role required for each task.

3 Agent Functionality Editor

The Agent Workbench’s Agent Functionality Editor (AFE) is used to specify
an individual agent’s capabilities, goals, beliefs, and other attributes. This
specification can be performed at several levels of abstraction, ranging from
definition of low-level primitive functionality (e.g. C/C++ functions) to
specification of one or more predefined process roles that the agent will need
to be capable of fulfilling, and the libraries of primitive functionality it will
need to perform those roles.

At the highest level, an Agent Workbench agent consists of roles and li-
braries. Roles are specifications of behavior, often the behavior needed to
play a part in a particular process. Each role has capabilities, goals, and
beliefs associated with it, and an agent needs only one role in order to func-
tion. The Agent Functionality Editor, however, supports the combination of
more than one role in a single executable agent, allowing an individual agent
to simultaneously support a number of different and possibly unrelated be-
haviors. For example, a single agent may play more than one automatically
generated role in a process, or a role specifying some particular useful be-
havior, such as the ability to report on internal state to some monitoring
process, may be added to an agent which already has a role specifying its
primary behavior. Roles are stored as separate files, organized by area of
functionality, making it easy to locate and reuse useful roles when automat-
ically or manually defining a new agent. The other high level components

of Agent Workbench agents are libraries. Libraries are collections of primi-
tive functionality, and, like roles, can be quickly added to agents. Libraries
can contain any sort of primitive functionality, though libraries supporting
inter-agent communication capabilities are especially useful.

The Agent Editor, shown in Figure 2, is used to specify an agent at this
high level. The agent developer simply uses pull-down menus and browsers
to specify the roles the agent is to perform, and the libraries of primitive func-
tionality to be made available to it. With this information, an executable
instance of the agent, complete with a makefile for linking the generated
primitive function code to the main agent engine, is automatically gener-
ated. The Agent Workbench is designed to accommodate multiple agent
architectures in a modular fashion, so that an instance of the agent in any of
a number of agent architectures will be able to be generated in this fashion.
At the moment, however, only the UMPRS agent architecture is supported.

Figure 3 shows the AFE’s Role Editor being used to define a particular
role within an agent. The role-specific beliefs, goals, and plans (which we
also call operators) can be specified by the agent developer here, although
they are often predefined or automatically generated. Like roles and libraries
at the agent level, plans can be easily stored individually and the later reused
in new agents that need the same functionality.

Figure 4 shows the Operator Editor with a fairly complex plan under
development. The left half of the figure shows the graphical representation
of the plan while the right half of the figure shows a textual representation.
The textual portion of this editor is in the syntax of what we call the Agent
Description Language (ADL), an amalgam of plan constructs and attributes
from the representations of the Procedural Reasoning System of Georgeff,
Rao, et al. [1] (more specifically, from the University of Michigan imple-
mentation, [5]), SRI’s ACT plan interlingua [11], and the Structured Circuit
Semantics (SCS) representation of Lee and Durfee [8, 7]. ADL is explained
in more detail below.

Within the Operator Editor of the AFE, modifications to the graphical
portion of the window results in automatic revisions of the text portion, while
modifications to the text portion results in revision of the graphics represen-
tation when the “Create Graph from Text” button (lower right corner) is
pressed by the developer. The developer can therefore use either graphical
drag—and-drop procedures, text editing, or a combination of the two to define
a plan.

10

The AFE also greatly facilitates development of domain—specific primitive
functions through use of the Primitive Library Editor, shown in Figure 5. A
primitive function library contains a collection of native—code functions with
a CORBA Interface Definition Language-like argument specification for each
function. Along with this are specified system— and architecture-specific in-
formation, such as the C++ include and load library paths to be used by
the system in automatically generating a makefile to build the library. Based
on the IDL-like specification, the Agent Functionality Editor automatically
generates code specific to an agent architecture, such as the “wrapper” code
required to interface between UMPRS representations and standard C++
representations. This automation makes it very easy to create new primi-
tive functions or change the IDL of existing ones. The non-wrapper contents
of the primitive functions are defined in a separate Primitive Function Ed-
itor. This component of the AFE is also agent—architecture specific in that
the generated implementation code must be in a form compatible with a
particular target agent architecture. However, the Primitive Library Editor
has been designed to accommodate analogous functionality for other agent
architectures.

A useful area for primitive definition is the communications domain. We
have defined libraries of primitives to support inter-agent communication
using plain sockets, TCX (a socket abstraction library from Carnegie Mellon
University), and CORBA. In the case of CORBA, we have implemented the
ability to automatically generate primitive libraries from CORBA IDL, thus
providing automatic binding between Agent Workbench agents and CORBA.
At the moment, these bindings have been completed for only a small subset
of the total CORBA IDL standard, but already they make it possible for the
developer to choose a (simple) CORBA IDL file, generate a library from it,
and then use the generated library primitives in agent plans, thus creating a
CORBA-enabled agent without the need to manually write primitive function
wrappers for each CORBA method.

The Agent Description Language (ADL) used to model agents within the
Agent Workbench is an amalgam of plan constructs and attributes from the
representations of the University of Michigan implementation of the Pro-
cedural Reasoning System [5, 9], SRI’'s ACT plan interlingua [11], and the
relatively recent Structured Circuit Semantics (SCS) representation of Lee
and Durfee [8, 7]. The ADL representation for goals, beliefs, and plan li-
braries are modeled identically to UMPRS; these areas require substantial

11

Figure 2: Example of the Agent Functionality Editor’'s Agent Editor inter-
face. An agent developer only needs to specify roles and primitive function
libraries to build a complete agent. A great deal of the details (bottom
panels) of agent construction is taken care of automatically.

effort to generalize them to support alternative models. A goal is defined to
specify a state of the world to achieve and is represented simply as a relation
name with arguments. Facts in the world are represented as propositional
relations, as mentioned above. A plan library (a common, but not universal,
agent attribute) is simply a list of operators (plans) that represents a goal
hierarchy, with one or more procedural methods for achieving each of the
goals and subgoals.

An ADL plan contains the following elements, some of which are optional:
a unique string identifier; a goal specification indicating the goal state to be
achieved by the plan; pre—, post—, and runtime—conditions; a utility func-
tion which calculates the overall utility of the plan; resource requirements; a
procedural specification for how to achieve the plans’ goal; and a procedural

12

Role Add

Role: tex-cycle-recv.role

WDEB Goals
[TCH_initialized "False |—[ACHIEVE thelmpossible;
attack_id 0; ACHIEVE init_TCH "1";
lastPeriodicTaskTime 0;
taskPerformanceRate a:

DEE 0;
[
Ciperators Cycle
Complez/Init. adl RETRIEVE DEEUG $DEBUG;
Complez/Handlelsg, adl RETRIEVE TCX_initialized $do

WHEN : TEST (== %done "True"
{
/f Message reception sec
/7 8imply grak messages

£ 3

Figure 3: Example of the Agent Functionality Editor’s Role Editor display.

specification for how to deal with plan failure. The Operator Editor sup-
ports a number of simple and complex plan constructs that can be included
in the plan and failure procedural specifications. These include: subgoal-
ing, invoking native—code primitive functions; actions for adding, removing,
and modifying the agent’s beliefs and top-level goals; conditional branching;
iterating; specification of atomic, non-interruptible procedure sections; and
parallel and non—deterministic execution.

4 Agent Execution Monitor

The Agent Execution Monitor (AEM) provides the capability to monitor
and control executing agents. This is a particularly useful ability during
development and debugging of a multi—agent system, where each agent can be
a distinct process running on a different machine and where the agents might
even move from machine to machine over time. The AEM is a set of graphical
tools for viewing and editing the beliefs, desires, and intentions (executing
plans) for distributed agents. The AEM displays are relatively simple and
the information is displayed primarily in a textual manner. Editing, adding,
and removing entries within the displayed information is supported through
graphical means (buttons, edit windows, etc.). The Goals Monitor display,

13

Operdtor Edit Opiions Primitives Add

' " Operator: SendEstimateQuote. adl
5 "gend estimate quote”
DOCUMENTATION @
"No documentation”
PURPOSE:

OMTEXT:
_ ACHIEVE sendBEstimateluote
FRIORITY:
100;

BODE :
JRERR AR AR AR A RS
Retriave wariables from ths WDR
AARRAKARARRRARAE RS [
RETRIE¥E DEBUG {DEBUG;
RETRIEVE selfModules $selfModule;
RETRIEVE OTHER _ID $otherld;
RETRIEVE ACE_ID $zelfld;
RETRIEVE otherModule SotherModul
WHEN : TEST (»= $DEEUG 1)

EXECUTE print "PRS: Processi

EX:ECUTE print "RFg " $rfgrd ' 1
ABBICN §g (/ §$rfgld 10000000);
JRERREIRARARRRAS AL

Cheak whether we’re sending
the quote to ourself
B

OR

B}

TEST (| (== $q §selfld));
ABBICN $quoteld 11111111;
ASEICN $msg (+ "QUOTE " $quo
FACT address $q $sender;
EXECUTE pTozSend $sendsy $ns

TEST (== $q $selfld);
ABSICN squoteld 33333333
ABEICN $msg (+ "QUOTE " jfguoc
POST ACHIRVE processQuote $q |

¥
EXECUTE print "Sent QUOTE " fquo ||

T |
Create Graph from Text |
Maove Selected Construct ﬂ ﬂ ﬂ) Select Congtruct from Text ‘

Figure 4: Example of the Agent Functionality Editor’s integrated text and
graphics Operator Editor display.

WDB Monitor (for World Data-Base) display, and the Intentions Monitor
display are shown in Figure 7, Figure 6, and Figure 8, respectively.

The current interface for the Goals Monitor provides the ability to view,
modify, add, and delete an agent’s goals. For example, one of the agent’s
goals can be removed simply by highlighting the desired entry and then
pushing the Remove button. The current WDB Monitor interface provides
the ability to view, modify, add, and delete the agent’s beliefs, with similar
simple interaction support. And, the current Intentions Monitor interface
currently provides only the ability to view which plans the agent is currently
executing.

Executing agents interface to the AEM displays through standard sock-
ets. This communication capability can be added to the agent simply by
specifying the Reporter role within the Agent Monitoring process within
the MAE. The examples shown in Figures 7-8 demonstrate a C++ agent

14

Library Primitive Functions

Library: TCX

Frimitive Functions
pTezlnit{in char* this_module_name);
pTezConnect(in char* name out TCX_MODULE_F
pTexSendlin void* module_id.in char* msg_string);
pTezRecviout void* module_id,out char* msg_strir
pGetithToken(in int nth,in char* string_arg,in char

Generated .cc Primitive Library File

/%% @Generated Primitive Code for the TeX Library %/
#include <std. b
#include "uwser, b

F5% User Header Start
#ineluds "tox_msgs. h"
exteon "'

#include "tox. h"
i

/%% User Headsr End

F5% gGenerated Primitive pTexInit ®=%7
PRIMTTTVE_FUNCTION{pTcxTnit)

[l]

User Header Clode ?f i 1= 2
tinclude "tox msgs.h” 2| , cerr << "Mcorrect number of argument:
i?;zgﬁd;c::téx R ExpListIterator next explargs);
} Ff Based on ‘in char® this_module_name’ speci:
char® this_module_name = {char®) next_sxp{j-»
£ Betumm values
£f=f{ Dnsert code below, Do not changes this L
| £ connect to TGX server
o] : o | 1
Include Faths Library Faths Libraries
sbir/2755/michaels/Agent/ANM Te | fsbir 173/ TCH lib—solaris tex
sbira173TCX include socket
nsl

Figure 5: Example of the Agent Functionality Editor’s Primitive Library
Editor display, where the developer can specify an API’s interface, imple-
mentation, and library-related agent building parameters.

based on UMPRS communicating to the displays. The agents created by the
Agent Workbench do not rely upon the AEM’s displays to be present and ac-
tive, and so may operate with or without the Agent Workbench components
in their environment. When using sockets, the agents look for the displays at
a known location (host and port) when they first start executing. CORBA-
based communication between agents and the AEM displays is planned but,
since it requires agent developers to have access to an Object Request Broker
(ORB), was deferred in favor of the more widespread socket mechanism.

15

Figure 6: Example of the Agent Execution Monitor’s facts display.

5 Summary and Future Work

The Agent Workbench represents a tremendous improvement in the ability
to develop and deliver agent-based applications. The Agent Functionality
Editor and Multi-Agent Editor provide easy to use, intuitive, graphical in-
terfaces for specifying agents at multiple levels of abstraction. These tools
greatly reduce an agent developer’s burden by automating many of the more
mundane tasks, leaving more time for more important high-level issues. Once

16

Goals Selected Goal Details Intentions Monitor

thelmpossible GOAL ReportToMonitor "localhost" 87
handleMsg 03110380 "MSG-B " 27! |PRICRITY: 0.0

| [ReportT olvianitor "loc IRIRy S TATUS: ACTIVE
SUBGOAL: NIL
PREVIOUS GOAL NIL

Intentions

) =

i

Goal Entry Goals Selected Goal Details

B GOAL: ReporiToMenitor ‘localhost’ 8773 FRICH)
PRIORITY: 0.0
STATUS: ACTIVE
SUBGOAL: NIL

Atd | Remove FREVIOUS GOAL: NIL
|History
Prev_Goal 1 0x0== MIL

23

Goal; :*ReportToMonitor "localhost” 8779 :PRIORITY 0™
Prioriy : 0.00

Mew? :False

Status :IS_ACTIVE

Subgoal :0d=> MIL

Prev_Goal s I0=> MIL

Histary

IntentionStackeD: (irst entry is tap_level_goal
Goal: : "ReportToMonitor *localhost” 6778 :PRIORITY 0*
Priority - 0.00
New 7 False
Status I5_ACTIVE
Subgoal 0x0=> NIL
Prev_Goal 0x0=> NIL

Close ' — -

Figure 7: Example of the Agent Exe- Figure 8: Example of the Agent Ex-
cution Monitor’s active and pending ecution Monitor’s intentions display.
goal list display.

low—level details of agents have been created the first time, an agent devel-
oper can simply browse through and select functionality and behaviors. The
Agent Execution Monitor provides basic but highly useful runtime inter-
faces for single and distributed multi-agent system evaluation, debugging,
and refinement. The Agent Workbench is also extremely portable due to its
implementation using Java.

The Agent Workbench is complete and fully functional and the people
using it recognize distinct advantages over their previous, more general soft-
ware development tools and processes. The Agent Workbench does not have
a lot of maturity at this point, however, and there are undoubtedly a number
of areas where the Workbench needs to be changed to be more robust and
user friendly.

More fundamental research in such areas as single and multiagent plan
representations, domain knowledge representations, and agent architectures
would all benefit the Workbench. Extension and development of the current
Workbench representations and interfaces to accommodate other agent ar-
chitectures (other than UMPRS), agent frameworks (other than BDI-based

17

systems), capability representations (other than simple IDL specifications
of primitive actions), and process models (other than IDEF) would also be
interesting and highly useful.

References

1]

2]

3]

4]

[5]

Michael P. Georgeff and Amy L. Lansky. Procedural knowledge.
Proceedings of the IEEE Special Issue on Knowledge Representation,
74(10):1383-1398, October 1986.

K. Hales and M. Lavery. Workflow Management Software: the Business
Opportunity. Ovum Ltd., London, UK, 1991.

David Hollingsworth. The workflow reference model. Technical Report
TC00-1003, The Workflow Management Coalition, Brussels, Belgium,
November 1994.

Marcus J. Huber and Jaeho Lee. The Jam! BDI Agent Architecture.
http://members.home.net /irs.html, 1997.

Marcus J. Huber, Jacho Lee, Patrick Kenny, and Edmund H. Durfee.
UM-PRS Programmer and User Guide. The University of Michigan,
1101 Beal Avenue, Ann Arbor MI 48109, Oct 1993.

Stefan Jablonski and Christoph Bussler. Workflow Management: Model-
ing Concepts, Architecture and Implementation. International Thomson
Computer Press, 1996.

Jaeho Lee. An Ezxplicit Semantics for Coordinated Multiagent Plan Ez-
ecution. PhD thesis, University of Michigan, Ann Arbor, Michigan,
January 1997.

Jaeho Lee and Edmund H. Durfee. Structured circuit semantics for re-
active plan execution systems. In Proceedings of the Twelth National
Conference on Artificial Intelligence, pages 1232-1237, Seattle, Wash-
ington, July 1994.

Jaeho Lee, Marcus J. Huber, Patrick G. Kenny, and Edmund H. Durfee.
UM-PRS: An implementation of the procedural reasoning system for

18

[10]

[11]

[12]

[13]

[14]

[15]

multirobot applications. In Conference on Intelligent Robotics in Field,
Factory, Service, and Space, pages 842-849, Houston, TX, March 1994.
American Institute of Aeronautics and Astronautics.

Richard J. Mayer, Christopher P. Menzel, Michael K. Painter, Paula S.
deWitte, Thomas Blinn, and Benjamin Perakath. Information integra-
tion for concurrent engineering (IICE) IDEF3 process description cap-
ture method report. Technical Report AL-TR-1995-XXXX, Knowledge
Based Systems, Incorporated, September 1995.

Karen L. Myers and David E. Wilkins. The Act Formalism. Artifi-
cial Intelligence Center, SRI International, Menlo Park, CA, version 2.1
edition, May 1997.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-
architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings
of the Second International Conference on Principles of Knowledge Rep-

resentation and Reasoning. Morgan Kaufmann Publishers, San Mateo,
CA, 1991.

S. J. Russell and P. Norvig. Artificial Intelligence. A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Jon Siegel. CORBA fundamentals and programming. John Wiley &
Sons, 1996.

Michael Wooldridge and Nicholas R. Jennings, editors. Intelligent
Agents — Theories, Architectures, and Languages, volume 890 of Lec-
ture Notes in Artificial Intelligence. Springer-Verlag, 1995.

19

