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1 IntroductionThe use of intelligent software agents within applications has been grown in-creasingly popular in the last few years. Multiagent systems, where a numberof agents cooperate to perform tasks, have also received considerable atten-tion lately. Our de�nition of an agent is an autonomous, intelligent softwareentity that can make decisions and perform actions based on perceived in-puts in order to achieve some goals [13]. Agents exhibit a number of usefulcharacteristics, including varying levels of autonomy, reactive and proactivebehavior, mobility, communication, and cooperation [15]. Agents also typi-cally have declarative representations for tasks and other attributes, makingthem much more exible than more traditional software approaches that useimplicit representations. Research related to agent theories and architec-tures has reached a maturity level at which people are con�dent enough withthe technology to incorporate it into applications outside of purely academicsystems.It is safe to say that a large majority of all agent{based applications todate were constructed using standard software implementation processes andstandard software development tools. Although many general developmenttools can work across a wide range of problems and paradigms, in many casestools designed speci�cally for a particular domain can simplify and streamlinedevelopment. Such is the case with intelligent software agents. Genericsoftware development tools are typically adequate for building agent{basedsystems, but tools optimized for such a task, that address the particular issuesand perspectives required for agent{based systems, should result in faster,easier, and more focused development. We have designed and implementedsuch a specialized tool, which we call the Agent Workbench Environment,(or simply, Agent Workbench) in Java.The Agent Workbench is a graphical framework and a set of underlyingrepresentations designed to facilitate the design, construction, and executionmonitoring of single and multi{agent systems. It consists of a Multi{AgentEditor, an Agent Functionality Editor, and an Agent Execution Monitor. Itis implemented in Java and therefore inherits all of the bene�ts associatedwith Java; in particular, the Agent Workbench should run on any platformthat has a Java virtual machine.The Multi{Agent Editor (MAE) is a graphically{interfaced tool used tocreate and edit multi{agent process speci�cations (i.e., tasks requiring more2



than one agent). Its underlying representations are being modi�ed to bebased upon the IDEF3 process modeling standard [10],1 which we extendedin order to capture information required for instantiating the multiple exe-cutable agents required to perform the process. This new scheme providessupport for multiple perspectives, or views, into the process model. Theseviews include: the role view , which depicts a process from an agent{centricperspective, which highlights which agents are responsible for which taskswithin a process; the activity view , which depicts a process from a task{centric perspective, which highlights which tasks must be performed, andin which order, to accomplish the objective of the process; the object view ,which depicts a process from one of the (possibly many) objects being man-aged within the process, and shows the transformation of the object as theprocess is executed; and the schedule view , which indicates the temporal se-quencing of each of the tasks required for the process independent of the rolerequired for each task. We describe the MAE in more detail in Section 2.The Agent Functionality Editor (AFE) provides a number of graphicaltools for specifying agent capabilities at multiple levels of abstraction, fromprimitive functionality to abstract plans to multi{agent plan speci�cations.The AFE is closely coupled with the MAE so that process speci�cationscreated within the MAE can be further re�ned within the AFE. The AFE'sprimary use is for development and re�nement of plan speci�cations for singleagents. This typically amounts to specifying one or more goals for the agent,an initial set of beliefs for the agent, and a set of capabilities in the form ofone or more plans that the agent can use to achieve its goals. None of thesespeci�cations are formally required however, as we recognize that an agentmay have the ability to generate plans, sense or infer beliefs, create goalson the y, etc., or an agent might acquire these from other agents throughcommunication. We describe the AFE in more detail in Section 3.The Agent Execution Monitor (AEM) provides several graphical user in-terfaces for observing and changing agent behavior during agent execution.Separate interfaces exist for the beliefs, pending and active goals, and in-tentions (instantiated, executing plans) of an agent. For example, the in-terface for the agent's beliefs provides the ability to view, modify, add, anddelete beliefs during runtime. Executing agents interface to the AEM dis-1The current implementation was not based upon IDEF standards but does providefully functional multi{agent process speci�cation capabilities.3



plays through sockets, a communication mechanism commonly supported onmany operating systems on many hardware platforms. CORBA (CommonObject Request Broker Architecture [14]) support is planned for the nearfuture. We describe the AEM in more detail in Section 4.Before describing the Agent Workbench in more detail, clari�cation ofits intent and scope is in order. The Workbench is designed to accom-modate a wide range of agent architectures based around the general Be-lief/Desire/Intention (BDI) theoretical framework [12]. These, in the cate-gorization of Wooldridge and Jennings [15], are a form of \hard" agent ar-chitecture, which have explicit conceptual and/or implementational modelsof such concepts as knowledge about the world (beliefs), goals (desires), andcommitment to action (intentions), among others. That is, the BDI agentsconstructed with the Agent Workbench have a stronger notion of agencythan their category of \soft" agents. Such soft agents may exhibit externalbehavior similar to their more theoretically founded counterparts, but do nothave the explicit, usually declarative modeling of such concepts and there-fore tend to be more specialized and less exible and dynamic, with implicit,hard-coded capabilities. The initial implementation of the Agent Workbenchcurrently fully supports the UMPRS agent architecture { the University ofMichigan implementation of the Procedural Reasoning System [5, 9] and iseasily extensible to alternative BDI agent architectures such as the Java-based Jam agent [4].2 Multi{Agent EditorThe Multi{Agent Editor (MAE) component of the Agent Workbench modelsthe interactions between autonomous agents that may be engaged in coop-erative and non{cooperative tasks. These agents are possibly geographicallydistributed and intentionally divergent (disparate goals and priorities).The MAE provides the functionalities to construct and edit multi{agentinteractions at multiple levels of abstraction (connectivity, language, proto-col, communication mechanism). In addition, the activities speci�ed in theprocess can be automatically mapped to executable individual agent plans.The individual agent plans also manage interdependencies between activitiessuch as adequate sequencing and synchronization of activities to coordinatelyaccomplish the goals identi�ed in the multi{agent process.4



The representational and functional requirements for the MAE are similarto that found in the �eld of workow [3, 6] and we attempt to leverage theinsights and previous work from this work and such standard representationsas IDEF3 [10] as much as possible.A workow management system is an active system that manages theow of business processes performed by multiple persons. A comprehensivede�nition of workow management is given by Hales and Lavery [2] as follows,Workow management software is a proactive computer systemwhich manages the ow of work among participants, accordingto a de�ned procedure consisting of a number of tasks. It co{ordinates users and system participants, together with the ap-propriate data resources, which may be accessible directly by thesystem or o�{line, to achieve de�ned objectives by set deadlines.The coordination involves passing tasks from participant to par-ticipant in correct sequence, ensuring that all ful�ll their requiredcontributions, taking default actions when necessary.In other words, workow management can be considered as a speci�cationcoordination problem, and thus we �nd closely related issues with multi{agent systems such as coordinated activity and resource sharing betweenagents.The current implementation was not based upon IDEF3 standards butprovides fully functional multi{agent process speci�cation capabilities (SeeFigure 1). In this implementation, the MAE graphically depicts a multi{agent interaction model represented in a declarative manner and results inworkow execution procedures that are distributed among the agents pos-sessing roles in the interactions speci�ed in the interaction speci�cation.Our underlying representations are being modi�ed to be based upon theIDEF3 process modeling standard, which we extended in order to captureinformation required for instantiating the multiple executable agents requiredto perform the process. IDEF3 is designed to help document and analyzethe process of an existing or proposed system. Proven guidelines and alanguage for information capture help users represent and organize processinformation for multiple downstream uses [10]. By switching to the IDEF3process modeling standard, we can take advantage of established knowledgeengineering methodology and existing extensive process libraries.5



Figure 1: An example of the current Multi{Agent Editor display. This pro-cess consists of two roles: one role sends \ping" messages to the agent ful�ll-ing the other role; the second role receives \ping" messages and sends \pong"replies to the agent ful�lling the �rst role.The MAE supports multiple views of the multi{agent process that theuser can switch between to get di�erent insights into the process. The ac-tivity view and the object view corresponds to the process-centered view andthe object-centered view of IDEF3, respectively. Activity views focus on as-sertions about the processes that occur and their ordering. Object views, onthe other hand, focus on a participating object or set of objects.In addition, the MAE supports the role view and the schedule view . Therole view depicts a process from an agent{centric perspective, which high-lights which agents are responsible for which tasks within a process. Theschedule view indicates the temporal sequencing of each of the tasks requiredfor the process independent of the role required for each task.
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Activity ViewThe activity view helps users to represent knowledge about events and activ-ities, the objects that participate in those occurrences, and the constrainingrelations that govern the behavior of an occurrence. The activity view, ortask view, in the MAE is a graphical layout explicitly indicating each ofthe tasks required for the process independent of the role required for eachtask. The graphical elements, adopted from IDEF3 process representations,include Unit of Behavior (UOB) boxes, links, and junctions.A UOB is a distinguishable packet of information about an event, deci-sion, act, or process. Links specify relationships (constraints) between UOBs.Precedence links express temporal precedence relations between instances ofone UOB and those of another. Relational links (dashed links) carry noprede�ned semantics, thus users can use it to highlight the existence of anyrelationship between two UOBs.A junction is a point in the process ow where a process ow pathbranches into multiple paths (fan-out junctions), or multiple process owpaths merge into one (fan-in junctions). Junctions thus describe the owlogic of the process.In the MAE, UOBs and links also have additional attributes to supportother views. The UMPRS agents that we can build with this model neces-sarily are limited to a subset of junctions however. Speci�cally, instantiableagents support AND and OR fan-in and XOR and synchronous AND andOR fan-out. UOBs and links have attributes associated with them that arenot standard IDEF3. For UOBs, these may include (but are not limited to):Label: a unique IDSubprocess speci�cation: label or other unique identi�er of a sub{graphthat speci�es how to accomplish the UOBs action.Cost: Numeric value or function that speci�es how expensive the action is.Failure condition: situations in which this action fails.Duration: how long it takes to perform that action. This may be somethinglike a constant, a min/max range, or a function.7



Role(s): one or more labels specifying either a requirement of the \services"that the performer of this action must have in order to do it, or thelabel applied to a performer of this action.Annotation: miscellaneous domain/application{speci�c information.Links between nodes have conditions speci�ed for them that representwhen the transition between nodes will occur. The link condition represen-tation may include (but is not limited to) the following relationships:Temporal transitions: simple sequencing of actions.Event transitions: messages or other types of a temporal occurrence.Arity constraints: how many of a particular event, message, recipient orsource, etc. need to be involved.Resource constraints: requirements of resources. The idea of how thisrepresentational information is transformed into actual agent{speci�ccode is that each UOB (and failure block) corresponds to an agentoperator (plan) and that the conditions on the links represent pre-conditioning contextual information on when the successive states areexecuted.Object viewAn object state in the IDEF3 process method is any physical or conceptualthing that is recognized and referred to by participants in the domain as apart of their description of what happens in their domain. The object viewdepicts information about how objects of various kinds are transformed intoother kinds of things through a process, how objects of a given kind changestates through a process, or context-setting information about importantrelations among objects in a process.In the MAE, the object view is displayed using a graphical layout explic-itly indicating the states one particular object takes throughout execution ofa process. Each object involved in a process would have a view from its ownperspective. 8



Role viewThe role view is a graphical layout explicitly indicating each of the tasksfor each role involved in the process, independent of which agent (softwareor human) actually performs the role. A more speci�c role view, whereindividual role interactions (e.g., messages, signals), and state transitionsand conditions can be viewed and modi�ed.Schedule viewThe schedule view is a graphical layout explicitly indicating the temporalsequencing of each of the tasks required for the process independent of therole required for each task.3 Agent Functionality EditorThe Agent Workbench's Agent Functionality Editor (AFE) is used to specifyan individual agent's capabilities, goals, beliefs, and other attributes. Thisspeci�cation can be performed at several levels of abstraction, ranging fromde�nition of low{level primitive functionality (e.g. C/C++ functions) tospeci�cation of one or more prede�ned process roles that the agent will needto be capable of ful�lling, and the libraries of primitive functionality it willneed to perform those roles.At the highest level, an Agent Workbench agent consists of roles and li-braries. Roles are speci�cations of behavior, often the behavior needed toplay a part in a particular process. Each role has capabilities, goals, andbeliefs associated with it, and an agent needs only one role in order to func-tion. The Agent Functionality Editor, however, supports the combination ofmore than one role in a single executable agent, allowing an individual agentto simultaneously support a number of di�erent and possibly unrelated be-haviors. For example, a single agent may play more than one automaticallygenerated role in a process, or a role specifying some particular useful be-havior, such as the ability to report on internal state to some monitoringprocess, may be added to an agent which already has a role specifying itsprimary behavior. Roles are stored as separate �les, organized by area offunctionality, making it easy to locate and reuse useful roles when automat-ically or manually de�ning a new agent. The other high level components9



of Agent Workbench agents are libraries. Libraries are collections of primi-tive functionality, and, like roles, can be quickly added to agents. Librariescan contain any sort of primitive functionality, though libraries supportinginter-agent communication capabilities are especially useful.The Agent Editor, shown in Figure 2, is used to specify an agent at thishigh level. The agent developer simply uses pull{down menus and browsersto specify the roles the agent is to perform, and the libraries of primitive func-tionality to be made available to it. With this information, an executableinstance of the agent, complete with a make�le for linking the generatedprimitive function code to the main agent engine, is automatically gener-ated. The Agent Workbench is designed to accommodate multiple agentarchitectures in a modular fashion, so that an instance of the agent in any ofa number of agent architectures will be able to be generated in this fashion.At the moment, however, only the UMPRS agent architecture is supported.Figure 3 shows the AFE's Role Editor being used to de�ne a particularrole within an agent. The role-speci�c beliefs, goals, and plans (which wealso call operators) can be speci�ed by the agent developer here, althoughthey are often prede�ned or automatically generated. Like roles and librariesat the agent level, plans can be easily stored individually and the later reusedin new agents that need the same functionality.Figure 4 shows the Operator Editor with a fairly complex plan underdevelopment. The left half of the �gure shows the graphical representationof the plan while the right half of the �gure shows a textual representation.The textual portion of this editor is in the syntax of what we call the AgentDescription Language (ADL), an amalgam of plan constructs and attributesfrom the representations of the Procedural Reasoning System of George�,Rao, et al. [1] (more speci�cally, from the University of Michigan imple-mentation, [5]), SRI's ACT plan interlingua [11], and the Structured CircuitSemantics (SCS) representation of Lee and Durfee [8, 7]. ADL is explainedin more detail below.Within the Operator Editor of the AFE, modi�cations to the graphicalportion of the window results in automatic revisions of the text portion, whilemodi�cations to the text portion results in revision of the graphics represen-tation when the \Create Graph from Text" button (lower right corner) ispressed by the developer. The developer can therefore use either graphicaldrag{and{drop procedures, text editing, or a combination of the two to de�nea plan. 10



The AFE also greatly facilitates development of domain{speci�c primitivefunctions through use of the Primitive Library Editor, shown in Figure 5. Aprimitive function library contains a collection of native{code functions witha CORBA Interface De�nition Language{like argument speci�cation for eachfunction. Along with this are speci�ed system{ and architecture{speci�c in-formation, such as the C++ include and load library paths to be used bythe system in automatically generating a make�le to build the library. Basedon the IDL{like speci�cation, the Agent Functionality Editor automaticallygenerates code speci�c to an agent architecture, such as the \wrapper" coderequired to interface between UMPRS representations and standard C++representations. This automation makes it very easy to create new primi-tive functions or change the IDL of existing ones. The non-wrapper contentsof the primitive functions are de�ned in a separate Primitive Function Ed-itor. This component of the AFE is also agent{architecture speci�c in thatthe generated implementation code must be in a form compatible with aparticular target agent architecture. However, the Primitive Library Editorhas been designed to accommodate analogous functionality for other agentarchitectures.A useful area for primitive de�nition is the communications domain. Wehave de�ned libraries of primitives to support inter-agent communicationusing plain sockets, TCX (a socket abstraction library from Carnegie MellonUniversity), and CORBA. In the case of CORBA, we have implemented theability to automatically generate primitive libraries from CORBA IDL, thusproviding automatic binding between Agent Workbench agents and CORBA.At the moment, these bindings have been completed for only a small subsetof the total CORBA IDL standard, but already they make it possible for thedeveloper to choose a (simple) CORBA IDL �le, generate a library from it,and then use the generated library primitives in agent plans, thus creating aCORBA-enabled agent without the need to manually write primitive functionwrappers for each CORBA method.The Agent Description Language (ADL) used to model agents within theAgent Workbench is an amalgam of plan constructs and attributes from therepresentations of the University of Michigan implementation of the Pro-cedural Reasoning System [5, 9], SRI's ACT plan interlingua [11], and therelatively recent Structured Circuit Semantics (SCS) representation of Leeand Durfee [8, 7]. The ADL representation for goals, beliefs, and plan li-braries are modeled identically to UMPRS; these areas require substantial11



Figure 2: Example of the Agent Functionality Editor's Agent Editor inter-face. An agent developer only needs to specify roles and primitive functionlibraries to build a complete agent. A great deal of the details (bottompanels) of agent construction is taken care of automatically.e�ort to generalize them to support alternative models. A goal is de�ned tospecify a state of the world to achieve and is represented simply as a relationname with arguments. Facts in the world are represented as propositionalrelations, as mentioned above. A plan library (a common, but not universal,agent attribute) is simply a list of operators (plans) that represents a goalhierarchy, with one or more procedural methods for achieving each of thegoals and subgoals.An ADL plan contains the following elements, some of which are optional:a unique string identi�er; a goal speci�cation indicating the goal state to beachieved by the plan; pre{, post{, and runtime{conditions; a utility func-tion which calculates the overall utility of the plan; resource requirements; aprocedural speci�cation for how to achieve the plans' goal; and a procedural12



Figure 3: Example of the Agent Functionality Editor's Role Editor display.speci�cation for how to deal with plan failure. The Operator Editor sup-ports a number of simple and complex plan constructs that can be includedin the plan and failure procedural speci�cations. These include: subgoal-ing, invoking native{code primitive functions; actions for adding, removing,and modifying the agent's beliefs and top-level goals; conditional branching;iterating; speci�cation of atomic, non{interruptible procedure sections; andparallel and non{deterministic execution.4 Agent Execution MonitorThe Agent Execution Monitor (AEM) provides the capability to monitorand control executing agents. This is a particularly useful ability duringdevelopment and debugging of a multi{agent system, where each agent can bea distinct process running on a di�erent machine and where the agents mighteven move from machine to machine over time. The AEM is a set of graphicaltools for viewing and editing the beliefs, desires, and intentions (executingplans) for distributed agents. The AEM displays are relatively simple andthe information is displayed primarily in a textual manner. Editing, adding,and removing entries within the displayed information is supported throughgraphical means (buttons, edit windows, etc.). The Goals Monitor display,13



Figure 4: Example of the Agent Functionality Editor's integrated text andgraphics Operator Editor display.WDB Monitor (for World Data-Base) display, and the Intentions Monitordisplay are shown in Figure 7, Figure 6, and Figure 8, respectively.The current interface for the Goals Monitor provides the ability to view,modify, add, and delete an agent's goals. For example, one of the agent'sgoals can be removed simply by highlighting the desired entry and thenpushing the Remove button. The current WDB Monitor interface providesthe ability to view, modify, add, and delete the agent's beliefs, with similarsimple interaction support. And, the current Intentions Monitor interfacecurrently provides only the ability to view which plans the agent is currentlyexecuting.Executing agents interface to the AEM displays through standard sock-ets. This communication capability can be added to the agent simply byspecifying the Reporter role within the Agent Monitoring process withinthe MAE. The examples shown in Figures 7-8 demonstrate a C++ agent14



Figure 5: Example of the Agent Functionality Editor's Primitive LibraryEditor display, where the developer can specify an API's interface, imple-mentation, and library{related agent building parameters.based on UMPRS communicating to the displays. The agents created by theAgent Workbench do not rely upon the AEM's displays to be present and ac-tive, and so may operate with or without the Agent Workbench componentsin their environment. When using sockets, the agents look for the displays ata known location (host and port) when they �rst start executing. CORBA{based communication between agents and the AEM displays is planned but,since it requires agent developers to have access to an Object Request Broker(ORB), was deferred in favor of the more widespread socket mechanism.
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Figure 6: Example of the Agent Execution Monitor's facts display.5 Summary and Future WorkThe Agent Workbench represents a tremendous improvement in the abilityto develop and deliver agent{based applications. The Agent FunctionalityEditor and Multi{Agent Editor provide easy to use, intuitive, graphical in-terfaces for specifying agents at multiple levels of abstraction. These toolsgreatly reduce an agent developer's burden by automating many of the moremundane tasks, leaving more time for more important high{level issues. Once16



Figure 7: Example of the Agent Exe-cution Monitor's active and pendinggoal list display. Figure 8: Example of the Agent Ex-ecution Monitor's intentions display.low{level details of agents have been created the �rst time, an agent devel-oper can simply browse through and select functionality and behaviors. TheAgent Execution Monitor provides basic but highly useful runtime inter-faces for single and distributed multi{agent system evaluation, debugging,and re�nement. The Agent Workbench is also extremely portable due to itsimplementation using Java.The Agent Workbench is complete and fully functional and the peopleusing it recognize distinct advantages over their previous, more general soft-ware development tools and processes. The Agent Workbench does not havea lot of maturity at this point, however, and there are undoubtedly a numberof areas where the Workbench needs to be changed to be more robust anduser friendly.More fundamental research in such areas as single and multiagent planrepresentations, domain knowledge representations, and agent architectureswould all bene�t the Workbench. Extension and development of the currentWorkbench representations and interfaces to accommodate other agent ar-chitectures (other than UMPRS), agent frameworks (other than BDI{based17
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